IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0255906.html
   My bibliography  Save this article

An improved deep forest model for prediction of e-commerce consumers’ repurchase behavior

Author

Listed:
  • Weiwei Zhang
  • Mingyan Wang

Abstract

As the Internet retail industry continues to rise, more and more consumers choose to shop online, especially Chinese consumers. Using consumer behavior data left on the Internet to predict repurchase behavior is of great significance for companies to achieve precision marketing. This paper proposes an improved deep forest model, and the interactive behavior characteristics of users and goods are added into the original feature model to predict the repurchase behavior of e-commerce consumers. Based on the Alibaba mobile e-commerce platform data set, first construct a feature engineering that includes user characteristics, product characteristics, and interactive behavior characteristics. And then use our proposed model to make predictions. Experiments show that the model’s overall performance with increased interactive behavior features is better and has higher accuracy. Compared with the existing prediction models, the improved deep forest model has certain advantages, which not only improves the prediction accuracy but also reduces the cost of training time.

Suggested Citation

  • Weiwei Zhang & Mingyan Wang, 2021. "An improved deep forest model for prediction of e-commerce consumers’ repurchase behavior," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-16, September.
  • Handle: RePEc:plo:pone00:0255906
    DOI: 10.1371/journal.pone.0255906
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0255906
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0255906&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0255906?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Claveria, Oscar & Torra, Salvador, 2014. "Forecasting tourism demand to Catalonia: Neural networks vs. time series models," Economic Modelling, Elsevier, vol. 36(C), pages 220-228.
    2. Lee, Tian-Shyug & Chiu, Chih-Chou & Chou, Yu-Chao & Lu, Chi-Jie, 2006. "Mining the customer credit using classification and regression tree and multivariate adaptive regression splines," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 1113-1130, February.
    3. Cheng-Ju Liu & Tien-Shou Huang & Ping-Tsan Ho & Jui-Chan Huang & Ching-Tang Hsieh, 2020. "Machine learning-based e-commerce platform repurchase customer prediction model," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cen, Xiao & Chen, Zengliang & Chen, Haifeng & Ding, Chen & Ding, Bo & Li, Fei & Lou, Fangwei & Zhu, Zhenyu & Zhang, Hongyu & Hong, Bingyuan, 2024. "User repurchase behavior prediction for integrated energy supply stations based on the user profiling method," Energy, Elsevier, vol. 286(C).
    2. Qing Yang & Naeem Hayat & Abdullah Al Mamun & Zafir Khan Mohamed Makhbul & Noor Raihani Zainol, 2022. "Sustainable customer retention through social media marketing activities using hybrid SEM-neural network approach," PLOS ONE, Public Library of Science, vol. 17(3), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davidescu Adriana AnaMaria & Agafiței Marina-Diana & Strat Vasile Alecsandru & Dima Alina Mihaela, 2024. "Mapping the Landscape: A Bibliometric Analysis of Rating Agencies in the Era of Artificial Intelligence and Machine Learning," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 18(1), pages 67-85.
    2. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    3. Cen, Xiao & Chen, Zengliang & Chen, Haifeng & Ding, Chen & Ding, Bo & Li, Fei & Lou, Fangwei & Zhu, Zhenyu & Zhang, Hongyu & Hong, Bingyuan, 2024. "User repurchase behavior prediction for integrated energy supply stations based on the user profiling method," Energy, Elsevier, vol. 286(C).
    4. Oscar Claveria & Enric Monte & Salvador Torra, 2013. "“Tourism demand forecasting with different neural networks models”," IREA Working Papers 201321, University of Barcelona, Research Institute of Applied Economics, revised Nov 2013.
    5. Marcos Álvarez-Díaz & Manuel González-Gómez & María Soledad Otero-Giráldez, 2018. "Forecasting International Tourism Demand Using a Non-Linear Autoregressive Neural Network and Genetic Programming," Forecasting, MDPI, vol. 1(1), pages 1-17, September.
    6. Adnan Dželihodžić & Dženana Đonko & Jasmin Kevrić, 2018. "Improved Credit Scoring Model Based on Bagging Neural Network," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(06), pages 1725-1741, November.
    7. Huseyin Ince & Bora Aktan, 2009. "A comparison of data mining techniques for credit scoring in banking: A managerial perspective," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 10(3), pages 233-240, March.
    8. Oscar Claveria & Enric Monte & Petar Soric & Salvador Torra, 2022. ""An application of deep learning for exchange rate forecasting"," IREA Working Papers 202201, University of Barcelona, Research Institute of Applied Economics, revised Jan 2022.
    9. Haddad, S. & Benghanem, M. & Mellit, A. & Daffallah, K.O., 2015. "ANNs-based modeling and prediction of hourly flow rate of a photovoltaic water pumping system: Experimental validation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 635-643.
    10. Elcin Koc & Cem Iyigun, 2014. "Restructuring forward step of MARS algorithm using a new knot selection procedure based on a mapping approach," Journal of Global Optimization, Springer, vol. 60(1), pages 79-102, September.
    11. Long Wen & Chang Liu & Haiyan Song, 2019. "Forecasting tourism demand using search query data: A hybrid modelling approach," Tourism Economics, , vol. 25(3), pages 309-329, May.
    12. Yi-Tien Lin & Mingchih Chen & Chien-Chang Ho & Tian-Shyug Lee, 2020. "Relationships among Leisure Physical Activity, Sedentary Lifestyle, Physical Fitness, and Happiness in Adults 65 Years or Older in Taiwan," IJERPH, MDPI, vol. 17(14), pages 1-12, July.
    13. Nadia Ayed & Khemaies Bougatef, 2024. "Performance Assessment of Logistic Regression (LR), Artificial Neural Network (ANN), Fuzzy Inference System (FIS) and Adaptive Neuro-Fuzzy System (ANFIS) in Predicting Default Probability: The Case of," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1803-1835, September.
    14. Zhao, Shangwei & Xie, Tian & Ai, Xin & Yang, Guangren & Zhang, Xinyu, 2023. "Correcting sample selection bias with model averaging for consumer demand forecasting," Economic Modelling, Elsevier, vol. 123(C).
    15. Chen, Shiyi & Jeong, Kiho & Härdle, Wolfgang Karl, 2008. "Recurrent support vector regression for a nonlinear ARMA model with applications to forecasting financial returns," SFB 649 Discussion Papers 2008-051, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    16. Dr. Murat çuhadar & Iclal Cogurcu & Ceyda Kukrer, 2014. "Modelling and Forecasting Cruise Tourism Demand to Izmir by Different Artificial Neural Network Architectures," International Journal of Business and Social Research, LAR Center Press, vol. 4(3), pages 12-28, March.
    17. Yılmaz, Engin, 2015. "Forecasting tourist arrivals to Turkey," MPRA Paper 68616, University Library of Munich, Germany.
    18. Ibtissem Baklouti, 2014. "A Psychological Approach To Microfinance Credit Scoring Via A Classification And Regression Tree," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 21(4), pages 193-208, October.
    19. Marisol Valencia Cárdenas & Juan Gabriel Vanegas López & Juan Carlos Correa Morales & Jorge Aníbal Restrepo Morales, 2017. "Comparing forecasts for tourism dynamics in Medellín, Colombia," Lecturas de Economía, Universidad de Antioquia, Departamento de Economía, issue 86, pages 199-230, Enero - J.
    20. Evžen Kocenda & Martin Vojtek, 2011. "Default Predictors in Retail Credit Scoring: Evidence from Czech Banking Data," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 47(6), pages 80-98, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0255906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.