IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0243105.html
   My bibliography  Save this article

Machine learning-based e-commerce platform repurchase customer prediction model

Author

Listed:
  • Cheng-Ju Liu
  • Tien-Shou Huang
  • Ping-Tsan Ho
  • Jui-Chan Huang
  • Ching-Tang Hsieh

Abstract

In recent years, China's e-commerce industry has developed at a high speed, and the scale of various industries has continued to expand. Service-oriented enterprises such as e-commerce transactions and information technology came into being. This paper analyzes the shortcomings and challenges of traditional online shopping behavior prediction methods, and proposes an online shopping behavior analysis and prediction system. The paper chooses linear model logistic regression and decision tree based XGBoost model. After optimizing the model, it is found that the nonlinear model can make better use of these features and get better prediction results. In this paper, we first combine the single model, and then use the model fusion algorithm to fuse the prediction results of the single model. The purpose is to avoid the accuracy of the linear model easy to fit and the decision tree model over-fitting. The results show that the model constructed by the article has further improvement than the single model. Finally, through two sets of contrast experiments, it is proved that the algorithm selected in this paper can effectively filter the features, which simplifies the complexity of the model to a certain extent and improves the classification accuracy of machine learning. The XGBoost hybrid model based on p/n samples is simpler than a single model. Machine learning models are not easily over-fitting and therefore more robust.

Suggested Citation

  • Cheng-Ju Liu & Tien-Shou Huang & Ping-Tsan Ho & Jui-Chan Huang & Ching-Tang Hsieh, 2020. "Machine learning-based e-commerce platform repurchase customer prediction model," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-15, December.
  • Handle: RePEc:plo:pone00:0243105
    DOI: 10.1371/journal.pone.0243105
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0243105
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0243105&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0243105?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weiwei Zhang & Mingyan Wang, 2021. "An improved deep forest model for prediction of e-commerce consumers’ repurchase behavior," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-16, September.
    2. Cen, Xiao & Chen, Zengliang & Chen, Haifeng & Ding, Chen & Ding, Bo & Li, Fei & Lou, Fangwei & Zhu, Zhenyu & Zhang, Hongyu & Hong, Bingyuan, 2024. "User repurchase behavior prediction for integrated energy supply stations based on the user profiling method," Energy, Elsevier, vol. 286(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0243105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.