IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0252657.html
   My bibliography  Save this article

Muscle network topology analysis for the classification of chronic neck pain based on EMG biomarkers extracted during walking

Author

Listed:
  • David Jiménez-Grande
  • S Farokh Atashzar
  • Eduardo Martinez-Valdes
  • Deborah Falla

Abstract

Neuromuscular impairments are frequently observed in patients with chronic neck pain (CNP). This study uniquely investigates whether changes in neck muscle synergies detected during gait are sensitive enough to differentiate between people with and without CNP. Surface electromyography (EMG) was recorded from the sternocleidomastoid, splenius capitis, and upper trapezius muscles bilaterally from 20 asymptomatic individuals and 20 people with CNP as they performed rectilinear and curvilinear gait. Intermuscular coherence was computed to generate the functional inter-muscle connectivity network, the topology of which is quantified based on a set of graph measures. Besides the functional network, spectrotemporal analysis of each EMG was used to form the feature set. With the use of Neighbourhood Component Analysis (NCA), we identified the most significant features and muscles for the classification/differentiation task conducted using K-Nearest Neighbourhood (K-NN), Support Vector Machine (SVM), and Linear Discriminant Analysis (LDA) algorithms. The NCA algorithm selected features from muscle network topology as one of the most relevant feature sets, which further emphasize the presence of major differences in muscle network topology between people with and without CNP. Curvilinear gait achieved the best classification performance through NCA-SVM based on only 16 features (accuracy: 85.00%, specificity: 81.81%, and sensitivity: 88.88%). Intermuscular muscle networks can be considered as a new sensitive tool for the classification of people with CNP. These findings further our understanding of how fundamental muscle networks are altered in people with CNP.

Suggested Citation

  • David Jiménez-Grande & S Farokh Atashzar & Eduardo Martinez-Valdes & Deborah Falla, 2021. "Muscle network topology analysis for the classification of chronic neck pain based on EMG biomarkers extracted during walking," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-17, June.
  • Handle: RePEc:plo:pone00:0252657
    DOI: 10.1371/journal.pone.0252657
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0252657
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0252657&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0252657?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Amir Bashan & Ronny P. Bartsch & Jan. W. Kantelhardt & Shlomo Havlin & Plamen Ch. Ivanov, 2012. "Network physiology reveals relations between network topology and physiological function," Nature Communications, Nature, vol. 3(1), pages 1-9, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shekhtman, Louis M. & Danziger, Michael M. & Havlin, Shlomo, 2016. "Recent advances on failure and recovery in networks of networks," Chaos, Solitons & Fractals, Elsevier, vol. 90(C), pages 28-36.
    2. George Xianzhi Yuan & Huiqi Wang, 2019. "The general dynamic risk assessment for the enterprise by the hologram approach in financial technology," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-48, March.
    3. Lucila G Alvarez-Zuzek & Cristian E La Rocca & Federico Vazquez & Lidia A Braunstein, 2016. "Interacting Social Processes on Interconnected Networks," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-17, September.
    4. Bumhee Park & Dae-Shik Kim & Hae-Jeong Park, 2014. "Graph Independent Component Analysis Reveals Repertoires of Intrinsic Network Components in the Human Brain," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-10, January.
    5. Lapatinas, Athanasios & Garas, Antonios, 2016. "The role of networks in firms’ multi-characteristics competition and market-share inequality," MPRA Paper 68959, University Library of Munich, Germany.
    6. Yeh, Chien-Hung & Lo, Men-Tzung & Hu, Kun, 2016. "Spurious cross-frequency amplitude–amplitude coupling in nonstationary, nonlinear signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 454(C), pages 143-150.
    7. Alireza Ermagun & Nazanin Tajik, 2021. "Recovery patterns and physics of the network," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-20, January.
    8. Pyko, Nikita S. & Pyko, Svetlana A. & Markelov, Oleg A. & Karimov, Artur I. & Butusov, Denis N. & Zolotukhin, Yaroslav V. & Uljanitski, Yuri D. & Bogachev, Mikhail I., 2018. "Assessment of cooperativity in complex systems with non-periodical dynamics: Comparison of five mutual information metrics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1054-1072.
    9. Wang, Yan-Jun & Zhu, Yun-Feng & Zhu, Chen-Ping & Wu, Fan & Yang, Hui-Jie & Yan, Yong-Jie & Hu, Chin-Kun, 2019. "Indicator of serious flight delays with the approach of time-delay stability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 363-373.
    10. Wang, Yanjun & Li, Max Z. & Gopalakrishnan, Karthik & Liu, Tongdan, 2022. "Timescales of delay propagation in airport networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    11. Feng Hu & Lin Ma & Xiu-Xiu Zhan & Yinzuo Zhou & Chuang Liu & Haixing Zhao & Zi-Ke Zhang, 2021. "The aging effect in evolving scientific citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 4297-4309, May.
    12. Pavlov, A.N. & Pavlova, O.N. & Koronovskii, A.A. & Guyo, G.A., 2022. "Extended detrended cross-correlation analysis of nonstationary processes," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    13. Liu, Yunxiao & Lin, Youfang & Wang, Jing & Shang, Pengjian, 2018. "Refined generalized multiscale entropy analysis for physiological signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 975-985.
    14. Yan, Shuang & Gu, Changgui & Yang, Huijie, 2024. "Bridge successive states for a complex system with evolutionary matrix," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    15. Jianxi Gao & Xueming Liu & Daqing Li & Shlomo Havlin, 2015. "Recent Progress on the Resilience of Complex Networks," Energies, MDPI, vol. 8(10), pages 1-24, October.
    16. Livi, Lorenzo & Maiorino, Enrico & Pinna, Andrea & Sadeghian, Alireza & Rizzi, Antonello & Giuliani, Alessandro, 2016. "Analysis of heat kernel highlights the strongly modular and heat-preserving structure of proteins," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 441(C), pages 199-214.
    17. Havlin, Shlomo & Stanley, H. Eugene & Bashan, Amir & Gao, Jianxi & Kenett, Dror Y., 2015. "Percolation of interdependent network of networks," Chaos, Solitons & Fractals, Elsevier, vol. 72(C), pages 4-19.
    18. Dror Kenett & Shlomo Havlin, 2015. "Network science: a useful tool in economics and finance," Mind & Society: Cognitive Studies in Economics and Social Sciences, Springer;Fondazione Rosselli, vol. 14(2), pages 155-167, November.
    19. Butusov, Denis N. & Karimov, Artur I. & Pyko, Nikita S. & Pyko, Svetlana A. & Bogachev, Mikhail I., 2018. "Discrete chaotic maps obtained by symmetric integration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 955-970.
    20. Berrut, Sylvie & Richmond, Peter & Roehner, Bertrand M., 2017. "Age spectrometry of infant death rates as a probe of immunity: Identification of two peaks due to viral and bacterial diseases respectively," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 915-924.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0252657. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.