IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v72y2015icp4-19.html
   My bibliography  Save this article

Percolation of interdependent network of networks

Author

Listed:
  • Havlin, Shlomo
  • Stanley, H. Eugene
  • Bashan, Amir
  • Gao, Jianxi
  • Kenett, Dror Y.

Abstract

Complex networks appear in almost every aspect of science and technology. Previous work in network theory has focused primarily on analyzing single networks that do not interact with other networks, despite the fact that many real-world networks interact with and depend on each other. Very recently an analytical framework for studying the percolation properties of interacting networks has been introduced. Here we review the analytical framework and the results for percolation laws for a Network Of Networks (NONs) formed by n interdependent random networks. The percolation properties of a network of networks differ greatly from those of single isolated networks. In particular, because the constituent networks of a NON are connected by node dependencies, a NON is subject to cascading failure. When there is strong interdependent coupling between networks, the percolation transition is discontinuous (first-order) phase transition, unlike the well-known continuous second-order transition in single isolated networks. Moreover, although networks with broader degree distributions, e.g., scale-free networks, are more robust when analyzed as single networks, they become more vulnerable in a NON. We also review the effect of space embedding on network vulnerability. It is shown that for spatially embedded networks any finite fraction of dependency nodes will lead to abrupt transition.

Suggested Citation

  • Havlin, Shlomo & Stanley, H. Eugene & Bashan, Amir & Gao, Jianxi & Kenett, Dror Y., 2015. "Percolation of interdependent network of networks," Chaos, Solitons & Fractals, Elsevier, vol. 72(C), pages 4-19.
  • Handle: RePEc:eee:chsofr:v:72:y:2015:i:c:p:4-19
    DOI: 10.1016/j.chaos.2014.09.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007791400160X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2014.09.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andre A. Moreira & Jose S. Andrade Jr. & Hans J. Herrmann & Joseph O. Indekeu, "undated". "How to make a fragile network robust and vice versa," Working Papers CCSS-09-001, ETH Zurich, Chair of Systems Design.
    2. Dorogovtsev, S. N. & Mendes, J.F.F., 2013. "Evolution of Networks: From Biological Nets to the Internet and WWW," OUP Catalogue, Oxford University Press, number 9780199686711.
    3. Gergely Palla & Imre Derényi & Illés Farkas & Tamás Vicsek, 2005. "Uncovering the overlapping community structure of complex networks in nature and society," Nature, Nature, vol. 435(7043), pages 814-818, June.
    4. Chaoming Song & Shlomo Havlin & Hernán A. Makse, 2005. "Self-similarity of complex networks," Nature, Nature, vol. 433(7024), pages 392-395, January.
    5. Réka Albert & Hawoong Jeong & Albert-László Barabási, 1999. "Diameter of the World-Wide Web," Nature, Nature, vol. 401(6749), pages 130-131, September.
    6. Amir Bashan & Ronny P. Bartsch & Jan. W. Kantelhardt & Shlomo Havlin & Plamen Ch. Ivanov, 2012. "Network physiology reveals relations between network topology and physiological function," Nature Communications, Nature, vol. 3(1), pages 1-9, January.
    7. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    8. Dror Y Kenett & Michele Tumminello & Asaf Madi & Gitit Gur-Gershgoren & Rosario N Mantegna & Eshel Ben-Jacob, 2010. "Dominating Clasp of the Financial Sector Revealed by Partial Correlation Analysis of the Stock Market," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-14, December.
    9. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    10. J. Donges & H. Schultz & N. Marwan & Y. Zou & J. Kurths, 2011. "Investigating the topology of interacting networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 84(4), pages 635-651, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Run-Ran & Chu, Changchang & Meng, Fanyuan, 2023. "Higher-order interdependent percolation on hypergraphs," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    2. Du, Ruijin & Dong, Gaogao & Tian, Lixin & Liu, Runran, 2016. "Targeted attack on networks coupled by connectivity and dependency links," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 687-699.
    3. Peng, Hao & Zhao, Yifan & Zhao, Dandan & Zhong, Ming & Hu, Zhaolong & Han, Jianming & Li, Runchao & Wang, Wei, 2023. "Robustness of higher-order interdependent networks," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    4. Rong, Qingnan & Zhang, Jun & Sun, Xiaoqian & Wandelt, Sebastian, 2022. "On the estimation of percolation thresholds for real networks," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    5. Wang, Fan & Tian, Lixin & Du, Ruijin & Dong, Gaogao, 2018. "The robustness of interdependent weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 675-680.
    6. Zhao, Longfeng & Wang, Gang-Jin & Wang, Mingang & Bao, Weiqi & Li, Wei & Stanley, H. Eugene, 2018. "Stock market as temporal network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 1104-1112.
    7. Tiong, Achara & Vergara, Hector A., 2023. "Evaluation of network expansion decisions for resilient interdependent critical infrastructures with different topologies," International Journal of Critical Infrastructure Protection, Elsevier, vol. 42(C).
    8. Oh, S.M. & Son, S.-W. & Kahng, B., 2021. "Percolation transitions in growing networks under achlioptas processes: Analytic solutions," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    9. Wang, Shuliang & Gu, Xifeng & Luan, Shengyang & Zhao, Mingwei, 2021. "Resilience analysis of interdependent critical infrastructure systems considering deep learning and network theory," International Journal of Critical Infrastructure Protection, Elsevier, vol. 35(C).
    10. Lucas Cuadra & Sancho Salcedo-Sanz & Javier Del Ser & Silvia Jiménez-Fernández & Zong Woo Geem, 2015. "A Critical Review of Robustness in Power Grids Using Complex Networks Concepts," Energies, MDPI, vol. 8(9), pages 1-55, August.
    11. Zhao, Longfeng & Yang, Yajie & Bai, Xiao & Chen, Lin & Lu, An-Liang & Zhang, Xin & Chen, Wei-Qiang, 2023. "Structure, robustness and supply risk in the global wind turbine trade network," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    12. Zhong, Li-Xin & Xu, Wen-Juan & Chen, Rong-Da & Zhong, Chen-Yang & Qiu, Tian & Shi, Yong-Dong & Wang, Li-Liang, 2016. "A generalized voter model with time-decaying memory on a multilayer network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 95-105.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    2. Jianxi Gao & Xueming Liu & Daqing Li & Shlomo Havlin, 2015. "Recent Progress on the Resilience of Complex Networks," Energies, MDPI, vol. 8(10), pages 1-24, October.
    3. Dror Kenett & Shlomo Havlin, 2015. "Network science: a useful tool in economics and finance," Mind & Society: Cognitive Studies in Economics and Social Sciences, Springer;Fondazione Rosselli, vol. 14(2), pages 155-167, November.
    4. Shekhtman, Louis M. & Danziger, Michael M. & Havlin, Shlomo, 2016. "Recent advances on failure and recovery in networks of networks," Chaos, Solitons & Fractals, Elsevier, vol. 90(C), pages 28-36.
    5. Lu, Qing-Chang & Xu, Peng-Cheng & Zhao, Xiangmo & Zhang, Lei & Li, Xiaoling & Cui, Xin, 2022. "Measuring network interdependency between dependent networks: A supply-demand-based approach," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    6. Wang, Jianwei & Jiang, Chen & Qian, Jianfei, 2014. "Robustness of interdependent networks with different link patterns against cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 535-541.
    7. Guo, Xue & Li, Weibo & Zhang, Hu & Tian, Tianhai, 2022. "Multi-likelihood methods for developing relationship networks using stock market data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    8. Zhang, Xue-Jun & Xu, Guo-Qiang & Zhu, Yan-Bo & Xia, Yong-Xiang, 2016. "Cascade-robustness optimization of coupling preference in interconnected networks," Chaos, Solitons & Fractals, Elsevier, vol. 92(C), pages 123-129.
    9. Liao, Hao & Wu, Xingtong & Wang, Bing-Hong & Wu, Xiangyang & Zhou, Mingyang, 2019. "Solving the speed and accuracy of box-covering problem in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 954-963.
    10. Wang, Jianwei & Li, Yun & Zheng, Qiaofang, 2015. "Cascading load model in interdependent networks with coupled strength," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 430(C), pages 242-253.
    11. Deng, Ye & Wu, Jun & Tan, Yue-jin, 2016. "Optimal attack strategy of complex networks based on tabu search," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 74-81.
    12. Blagus, Neli & Šubelj, Lovro & Bajec, Marko, 2012. "Self-similar scaling of density in complex real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2794-2802.
    13. Gao, Yan-Li & Chen, Shi-Ming & Nie, Sen & Ma, Fei & Guan, Jun-Jie, 2018. "Robustness analysis of interdependent networks under multiple-attacking strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 495-504.
    14. Beiró, Mariano G. & Busch, Jorge R. & Grynberg, Sebastian P. & Alvarez-Hamelin, J. Ignacio, 2013. "Obtaining communities with a fitness growth process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2278-2293.
    15. Li, Wenyuan & Lin, Yongjing & Liu, Ying, 2007. "The structure of weighted small-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 708-718.
    16. Chen, Jin & Le, Anbo & Wang, Qin & Xi, Lifeng, 2016. "A small-world and scale-free network generated by Sierpinski Pentagon," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 126-135.
    17. Hao, Yucheng & Jia, Limin & Wang, Yanhui, 2020. "Edge attack strategies in interdependent scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    18. Wang, Jianwei & Sun, Enhui & Xu, Bo & Li, Peng & Ni, Chengzhang, 2016. "Abnormal cascading failure spreading on complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 695-701.
    19. Aming Li & Yang-Yu Liu, 2020. "Controlling Network Dynamics," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(07n08), pages 1-19, February.
    20. Yao, Jialing & Sun, Bingbin & Xi, lifeng, 2019. "Fractality of evolving self-similar networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 211-216.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:72:y:2015:i:c:p:4-19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.