IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v490y2018icp975-985.html
   My bibliography  Save this article

Refined generalized multiscale entropy analysis for physiological signals

Author

Listed:
  • Liu, Yunxiao
  • Lin, Youfang
  • Wang, Jing
  • Shang, Pengjian

Abstract

Multiscale entropy analysis has become a prevalent complexity measurement and been successfully applied in various fields. However, it only takes into account the information of mean values (first moment) in coarse-graining procedure. Then generalized multiscale entropy (MSEn) considering higher moments to coarse-grain a time series was proposed and MSEσ2 has been implemented. However, the MSEσ2 sometimes may yield an imprecise estimation of entropy or undefined entropy, and reduce statistical reliability of sample entropy estimation as scale factor increases. For this purpose, we developed the refined model, RMSEσ2, to improve MSEσ2. Simulations on both white noise and 1∕f noise show that RMSEσ2 provides higher entropy reliability and reduces the occurrence of undefined entropy, especially suitable for short time series. Besides, we discuss the effect on RMSEσ2 analysis from outliers, data loss and other concepts in signal processing. We apply the proposed model to evaluate the complexity of heartbeat interval time series derived from healthy young and elderly subjects, patients with congestive heart failure and patients with atrial fibrillation respectively, compared to several popular complexity metrics. The results demonstrate that RMSEσ2 measured complexity (a) decreases with aging and diseases, and (b) gives significant discrimination between different physiological/pathological states, which may facilitate clinical application.

Suggested Citation

  • Liu, Yunxiao & Lin, Youfang & Wang, Jing & Shang, Pengjian, 2018. "Refined generalized multiscale entropy analysis for physiological signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 975-985.
  • Handle: RePEc:eee:phsmap:v:490:y:2018:i:c:p:975-985
    DOI: 10.1016/j.physa.2017.08.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711730780X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.08.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amir Bashan & Ronny P. Bartsch & Jan. W. Kantelhardt & Shlomo Havlin & Plamen Ch. Ivanov, 2012. "Network physiology reveals relations between network topology and physiological function," Nature Communications, Nature, vol. 3(1), pages 1-9, January.
    2. Wang, Jing & Shang, Pengjian & Xia, Jianan & Shi, Wenbin, 2015. "EMD based refined composite multiscale entropy analysis of complex signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 583-593.
    3. Costa, M. & Peng, C.-K. & L. Goldberger, Ary & Hausdorff, Jeffrey M., 2003. "Multiscale entropy analysis of human gait dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 330(1), pages 53-60.
    4. Wu, Shuen-De & Wu, Chiu-Wen & Lee, Kung-Yen & Lin, Shiou-Gwo, 2013. "Modified multiscale entropy for short-term time series analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5865-5873.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Delgado-Bonal, Alfonso & López, Álvaro García, 2021. "Quantifying the randomness of the forex market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 569(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Meng & Shang, Pengjian, 2018. "Analysis of financial time series using multiscale entropy based on skewness and kurtosis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1543-1550.
    2. Yin, Yi & Shang, Pengjian & Feng, Guochen, 2016. "Modified multiscale cross-sample entropy for complex time series," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 98-110.
    3. Zhang, Ningning & Lin, Aijing & Ma, Hui & Shang, Pengjian & Yang, Pengbo, 2018. "Weighted multivariate composite multiscale sample entropy analysis for the complexity of nonlinear times series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 595-607.
    4. Alves Xavier, Sílvio Fernando & Xavier, Érika Fialho Morais & Jale, Jader Silva & Stosic, Tatijana & Santos, Carlos Antonio Costa dos, 2021. "Multiscale entropy analysis of monthly rainfall time series in Paraíba, Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    5. Brechtl, Jamieson & Xie, Xie & Liaw, Peter K. & Zinkle, Steven J., 2018. "Complexity modeling and analysis of chaos and other fluctuating phenomena," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 166-175.
    6. Wu, Shuen-De & Wu, Chiu-Wen & Humeau-Heurtier, Anne, 2016. "Refined scale-dependent permutation entropy to analyze systems complexity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 454-461.
    7. Shekhtman, Louis M. & Danziger, Michael M. & Havlin, Shlomo, 2016. "Recent advances on failure and recovery in networks of networks," Chaos, Solitons & Fractals, Elsevier, vol. 90(C), pages 28-36.
    8. George Xianzhi Yuan & Huiqi Wang, 2019. "The general dynamic risk assessment for the enterprise by the hologram approach in financial technology," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-48, March.
    9. Natiq, Hayder & Banerjee, Santo & He, Shaobo & Said, M.R.M. & Kilicman, Adem, 2018. "Designing an M-dimensional nonlinear model for producing hyperchaos," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 506-515.
    10. Deka, Bhabesh & Deka, Dipen, 2022. "An improved multiscale distribution entropy for analyzing complexity of real-world signals," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    11. Wang, Shujia & Yang, Zhuojin & Zheng, Xin & Ma, Zhuang, 2024. "Analysis of complex time series based on EEMD energy entropy plane," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    12. Litak, Grzegorz & Abadal, Gabriel & Rysak, Andrzej & Przywara, Hubert, 2017. "Complex dynamics of a bistable electrically charged microcantilever: Transition from single well to cross well oscillations," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 85-90.
    13. Kirchner, M. & Schubert, P. & Schmidtbleicher, D. & Haas, C.T., 2012. "Evaluation of the temporal structure of postural sway fluctuations based on a comprehensive set of analysis tools," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4692-4703.
    14. Zeng, Yayun & Wang, Jun & Xu, Kaixuan, 2017. "Complexity and multifractal behaviors of multiscale-continuum percolation financial system for Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 364-376.
    15. Niu, Hongli & Wang, Jun, 2017. "Return volatility duration analysis of NYMEX energy futures and spot," Energy, Elsevier, vol. 140(P1), pages 837-849.
    16. Marin-Lopez, A. & Martínez-Cadena, J.A. & Martinez-Martinez, F. & Alvarez-Ramirez, J., 2023. "Surrogate multivariate Hurst exponent analysis of gait dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    17. Lucila G Alvarez-Zuzek & Cristian E La Rocca & Federico Vazquez & Lidia A Braunstein, 2016. "Interacting Social Processes on Interconnected Networks," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-17, September.
    18. Bumhee Park & Dae-Shik Kim & Hae-Jeong Park, 2014. "Graph Independent Component Analysis Reveals Repertoires of Intrinsic Network Components in the Human Brain," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-10, January.
    19. Pan, Junshan & Hu, Hanping & Liu, Ying, 2014. "Human behavior during Flash Crowd in web surfing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 212-219.
    20. Lapatinas, Athanasios & Garas, Antonios, 2016. "The role of networks in firms’ multi-characteristics competition and market-share inequality," MPRA Paper 68959, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:490:y:2018:i:c:p:975-985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.