IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v97y2024i7d10.1140_epjb_s10051-024-00746-9.html
   My bibliography  Save this article

Periodic boundary condition effects in small-world networks

Author

Listed:
  • Yann Lucas Silva

    (Universidade Federal de Jataí)

  • Ariadne Andrade Costa

    (Universidade Federal de Jataí
    Universidade de São Paulo)

Abstract

Understanding boundary conditions is crucial for properly modeling interactions and constraints within a system. In particular, periodic boundary conditions play an important role, because they allow systems to be treated as if existing in a continuous, constraint-free space, with significant relevance across diverse scientific fields. Our study explores the effects of periodic boundary conditions on Small-World networks by comparing traditional and flat versions derived from Ring and Line networks, respectively, through comparisons of network metrics and disconnection assessments. Recognizing the critical role of network topology in the behavior of dynamical models, we use an epidemic model to show that the structure of a network can either facilitate or hinder the spread of disease, emphasizing the importance of boundary conditions on these dynamics. The faster spread of disease in Ring networks, with shorter Average Shortest Paths, as well as their resilience on keeping network connectivity under rewiring, illustrate the impact that periodic boundary conditions can have on epidemic scenarios. Graphic Abstract

Suggested Citation

  • Yann Lucas Silva & Ariadne Andrade Costa, 2024. "Periodic boundary condition effects in small-world networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(7), pages 1-9, July.
  • Handle: RePEc:spr:eurphb:v:97:y:2024:i:7:d:10.1140_epjb_s10051-024-00746-9
    DOI: 10.1140/epjb/s10051-024-00746-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/s10051-024-00746-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/s10051-024-00746-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Garlaschelli & T. Di Matteo & T. Aste & G. Caldarelli & M. I. Loffredo, 2007. "Interplay between topology and dynamics in the World Trade Web," Papers physics/0701030, arXiv.org.
    2. Sandro M. Reia, 2020. "Diffusion of innovations in Axelrod’s model on small-world networks," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 31(08), pages 1-11, August.
    3. Daron Acemoglu & Victor Chernozhukov & Iván Werning & Michael D. Whinston, 2021. "Optimal Targeted Lockdowns in a Multigroup SIR Model," American Economic Review: Insights, American Economic Association, vol. 3(4), pages 487-502, December.
    4. Ziff, Robert M., 2021. "Percolation and the pandemic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 568(C).
    5. Kohestani, Havva & Totonkuban, Mahbubeh & Di Paola, Luisa & Todde, Virginia & Giuliani, Alessandro, 2018. "The basic principles of topology-dynamics relations in networks: An empirical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 584-594.
    6. Latora, Vito & Marchiori, Massimo, 2002. "Is the Boston subway a small-world network?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 109-113.
    7. Seaton, Katherine A. & Hackett, Lisa M., 2004. "Stations, trains and small-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 339(3), pages 635-644.
    8. Gomes, P.F. & Fernandes, H.A. & Costa, A.A., 2022. "Topological transition in a coupled dynamics in random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    9. D. Garlaschelli & T. Di Matteo & T. Aste & G. Caldarelli & M. I. Loffredo, 2007. "Interplay between topology and dynamics in the World Trade Web," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 57(2), pages 159-164, May.
    10. Amir Bashan & Ronny P. Bartsch & Jan. W. Kantelhardt & Shlomo Havlin & Plamen Ch. Ivanov, 2012. "Network physiology reveals relations between network topology and physiological function," Nature Communications, Nature, vol. 3(1), pages 1-9, January.
    11. Mello, Isys F. & Squillante, Lucas & Gomes, Gabriel O. & Seridonio, Antonio C. & de Souza, Mariano, 2021. "Epidemics, the Ising-model and percolation theory: A comprehensive review focused on Covid-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Dueñas & Giorgio Fagiolo, 2013. "Modeling the International-Trade Network: a gravity approach," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 8(1), pages 155-178, April.
    2. Huang, Siyu & Shi, Yi & Chen, Qinghua & Li, Xiaomeng, 2022. "The growth path of high-tech industries: Statistical laws and evolution demands," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    3. Lordan, Oriol & Sallan, Jose M., 2019. "Core and critical cities of global region airport networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 724-733.
    4. Aldrich, Preston R. & El-Zabet, Jermeen & Hassan, Seerat & Briguglio, Joseph & Aliaj, Enela & Radcliffe, Maria & Mirza, Taha & Comar, Timothy & Nadolski, Jeremy & Huebner, Cynthia D., 2015. "Monte Carlo tests of small-world architecture for coarse-grained networks of the United States railroad and highway transportation systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 32-39.
    5. Mungo, Luca & Lafond, François & Astudillo-Estévez, Pablo & Farmer, J. Doyne, 2023. "Reconstructing production networks using machine learning," Journal of Economic Dynamics and Control, Elsevier, vol. 148(C).
    6. Rosanna Pittiglio & Filippo Reganati & Luca Toschi, 2017. "How to detect illegal waste shipments? The case of the international trade in polyethylene waste," Economics Bulletin, AccessEcon, vol. 37(4), pages 2625-2640.
    7. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2010. "Complex stock trading network among investors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4929-4941.
    8. Giorgio Fagiolo & Tiziano Squartini & Diego Garlaschelli, 2013. "Null models of economic networks: the case of the world trade web," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 8(1), pages 75-107, April.
    9. Dupuy, Gabriel, 2013. "Network geometry and the urban railway system: the potential benefits to geographers of harnessing inputs from “naive” outsiders," Journal of Transport Geography, Elsevier, vol. 33(C), pages 85-94.
    10. Du, Zhouyang & Tang, Jinjun & Qi, Yong & Wang, Yiwei & Han, Chunyang & Yang, Yifan, 2020. "Identifying critical nodes in metro network considering topological potential: A case study in Shenzhen city—China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    11. Periklis Gogas & Rangan Gupta & Stephen M. Miller & Theophilos Papadimitriou & Georgios Antonios Sarantitis, 2015. "Income Inequality: A State-by-State Complex Network Analysis," Working Papers 201534, University of Pretoria, Department of Economics.
    12. Barigozzi, Matteo & Fagiolo, Giorgio & Mangioni, Giuseppe, 2011. "Identifying the community structure of the international-trade multi-network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 2051-2066.
    13. Assaf Almog & Rhys Bird & Diego Garlaschelli, 2015. "Enhanced Gravity Model of trade: reconciling macroeconomic and network models," Papers 1506.00348, arXiv.org, revised Feb 2019.
    14. Zhong, Weiqiong & An, Haizhong & Shen, Lei & Dai, Tao & Fang, Wei & Gao, Xiangyun & Dong, Di, 2017. "Global pattern of the international fossil fuel trade: The evolution of communities," Energy, Elsevier, vol. 123(C), pages 260-270.
    15. Haonan Ye & Xiao Luo, 2021. "Cascading Failure Analysis on Shanghai Metro Networks: An Improved Coupled Map Lattices Model Based on Graph Attention Networks," IJERPH, MDPI, vol. 19(1), pages 1-17, December.
    16. Song, Dong-Ming & Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2009. "Statistical properties of world investment networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(12), pages 2450-2460.
    17. Ghosh, Saptarshi & Banerjee, Avishek & Ganguly, Niloy, 2012. "Some insights on the recent spate of accidents in Indian Railways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(9), pages 2917-2929.
    18. Vamvakaris, Michail D. & Pantelous, Athanasios A. & Zuev, Konstantin M., 2018. "Time series analysis of S&P 500 index: A horizontal visibility graph approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 41-51.
    19. Marco Dueñas & Giorgio Fagiolo, 2014. "Global Trade Imbalances: A Network Approach," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 17(03n04), pages 1-29.
    20. I. Tzekina & K. Danthi & D. Rockmore, 2008. "Evolution of community structure in the world trade web," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 63(4), pages 541-545, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:97:y:2024:i:7:d:10.1140_epjb_s10051-024-00746-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.