IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0250935.html
   My bibliography  Save this article

How well did experts and laypeople forecast the size of the COVID-19 pandemic?

Author

Listed:
  • Gabriel Recchia
  • Alexandra L J Freeman
  • David Spiegelhalter

Abstract

Throughout the COVID-19 pandemic, social and traditional media have disseminated predictions from experts and nonexperts about its expected magnitude. How accurate were the predictions of ‘experts’—individuals holding occupations or roles in subject-relevant fields, such as epidemiologists and statisticians—compared with those of the public? We conducted a survey in April 2020 of 140 UK experts and 2,086 UK laypersons; all were asked to make four quantitative predictions about the impact of COVID-19 by 31 Dec 2020. In addition to soliciting point estimates, we asked participants for lower and higher bounds of a range that they felt had a 75% chance of containing the true answer. Experts exhibited greater accuracy and calibration than laypersons, even when restricting the comparison to a subset of laypersons who scored in the top quartile on a numeracy test. Even so, experts substantially underestimated the ultimate extent of the pandemic, and the mean number of predictions for which the expert intervals contained the actual outcome was only 1.8 (out of 4), suggesting that experts should consider broadening the range of scenarios they consider plausible. Predictions of the public were even more inaccurate and poorly calibrated, suggesting that an important role remains for expert predictions as long as experts acknowledge their uncertainty.

Suggested Citation

  • Gabriel Recchia & Alexandra L J Freeman & David Spiegelhalter, 2021. "How well did experts and laypeople forecast the size of the COVID-19 pandemic?," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-16, May.
  • Handle: RePEc:plo:pone00:0250935
    DOI: 10.1371/journal.pone.0250935
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0250935
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0250935&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0250935?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ribeiro, Matheus Henrique Dal Molin & da Silva, Ramon Gomes & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2020. "Short-term forecasting COVID-19 cumulative confirmed cases: Perspectives for Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    2. Sibel Eker, 2020. "Validity and usefulness of COVID-19 models," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-5, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masum, Mohammad & Masud, M.A. & Adnan, Muhaiminul Islam & Shahriar, Hossain & Kim, Sangil, 2022. "Comparative study of a mathematical epidemic model, statistical modeling, and deep learning for COVID-19 forecasting and management," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    2. Rastko Jovanović & Miloš Davidović & Ivan Lazović & Maja Jovanović & Milena Jovašević-Stojanović, 2021. "Modelling Voluntary General Population Vaccination Strategies during COVID-19 Outbreak: Influence of Disease Prevalence," IJERPH, MDPI, vol. 18(12), pages 1-18, June.
    3. Iloanusi, Ogechukwu & Ross, Arun, 2021. "Leveraging weather data for forecasting cases-to-mortality rates due to COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    4. Dalton Garcia Borges de Souza & Erivelton Antonio dos Santos & Francisco Tarcísio Alves Júnior & Mariá Cristina Vasconcelos Nascimento, 2021. "On Comparing Cross-Validated Forecasting Models with a Novel Fuzzy-TOPSIS Metric: A COVID-19 Case Study," Sustainability, MDPI, vol. 13(24), pages 1-25, December.
    5. Medeiros, Marcelo C. & Street, Alexandre & Valladão, Davi & Vasconcelos, Gabriel & Zilberman, Eduardo, 2022. "Short-term Covid-19 forecast for latecomers," International Journal of Forecasting, Elsevier, vol. 38(2), pages 467-488.
    6. Noor Alkhateeb & Farag Sallabi & Saad Harous & Mamoun Awad, 2022. "A Study on Predicting the Outbreak of COVID-19 in the United Arab Emirates: A Monte Carlo Simulation Approach," Mathematics, MDPI, vol. 10(23), pages 1-17, November.
    7. Zhao, Xinxing & Li, Kainan & Ang, Candice Ke En & Ho, Andrew Fu Wah & Liu, Nan & Ong, Marcus Eng Hock & Cheong, Kang Hao, 2022. "A deep learning architecture for forecasting daily emergency department visits with acuity levels," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    8. Rafael Pérez Abreu C. & Samantha Estrada & Héctor de-la-Torre-Gutiérrez, 2021. "A Two-Step Polynomial and Nonlinear Growth Approach for Modeling COVID-19 Cases in Mexico," Mathematics, MDPI, vol. 9(18), pages 1-18, September.
    9. Perone, G., 2020. "Comparison of ARIMA, ETS, NNAR and hybrid models to forecast the second wave of COVID-19 hospitalizations in Italy," Health, Econometrics and Data Group (HEDG) Working Papers 20/18, HEDG, c/o Department of Economics, University of York.
    10. da Silva, Ramon Gomes & Ribeiro, Matheus Henrique Dal Molin & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2020. "Forecasting Brazilian and American COVID-19 cases based on artificial intelligence coupled with climatic exogenous variables," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    11. Mandal, Manotosh & Jana, Soovoojeet & Nandi, Swapan Kumar & Khatua, Anupam & Adak, Sayani & Kar, T.K., 2020. "A model based study on the dynamics of COVID-19: Prediction and control," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    12. Barraza, Néstor Ruben & Pena, Gabriel & Moreno, Verónica, 2020. "A non-homogeneous Markov early epidemic growth dynamics model. Application to the SARS-CoV-2 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    13. Bhuvanesh Kumar Shanmugam & Maryam Alqaydi & Degan Abdisalam & Monika Shukla & Helio Santos & Ranya Samour & Lawrence Petalidis & Charles Matthew Oliver & Grzegorz Brudecki & Samara Bin Salem & Wael E, 2024. "A Narrative Review of High Throughput Wastewater Sample Processing for Infectious Disease Surveillance: Challenges, Progress, and Future Opportunities," IJERPH, MDPI, vol. 21(11), pages 1-22, October.
    14. Ahed Abugabah & Farah Shahid, 2023. "Intelligent Health Care and Diseases Management System: Multi-Day-Ahead Predictions of COVID-19," Mathematics, MDPI, vol. 11(4), pages 1-19, February.
    15. da Silva, Ramon Gomes & Ribeiro, Matheus Henrique Dal Molin & Moreno, Sinvaldo Rodrigues & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2021. "A novel decomposition-ensemble learning framework for multi-step ahead wind energy forecasting," Energy, Elsevier, vol. 216(C).
    16. Ekinci, Aykut, 2021. "Modelling and forecasting of growth rate of new COVID-19 cases in top nine affected countries: Considering conditional variance and asymmetric effect," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    17. Mishra, Bimal Kumar & Keshri, Ajit Kumar & Saini, Dinesh Kumar & Ayesha, Syeda & Mishra, Binay Kumar & Rao, Yerra Shankar, 2021. "Mathematical model, forecast and analysis on the spread of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    18. Hwang, Eunju, 2022. "Prediction intervals of the COVID-19 cases by HAR models with growth rates and vaccination rates in top eight affected countries: Bootstrap improvement," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    19. Das, Saikat & Bose, Indranil & Sarkar, Uttam Kumar, 2023. "Predicting the outbreak of epidemics using a network-based approach," European Journal of Operational Research, Elsevier, vol. 309(2), pages 819-831.
    20. Crokidakis, Nuno, 2020. "COVID-19 spreading in Rio de Janeiro, Brazil: Do the policies of social isolation really work?," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0250935. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.