IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0243345.html
   My bibliography  Save this article

Planning for classroom physical distancing to minimize the threat of COVID-19 disease spread

Author

Listed:
  • Alan T Murray

Abstract

The coronavirus disease 2019 is a respiratory illness spread between people. A primary weapon for reducing or eliminating this disease involves physical distancing to thwart transmission. Efforts to keep the economy moving include enacting physical distancing strategies that will increase the safety of workplaces, schools, businesses, etc. Given that education is a critical economic sector that impacts essentially all other sectors in some way, this paper details a planning approach for classroom physical distancing supported by spatial optimization. Devising a configuration of desks and/or workspaces that are physically distant is a type of dispersion problem that can be formalized mathematically and solved. Planning efforts for a university campus serve to illustrate how spatial optimization can support safety enhancements.

Suggested Citation

  • Alan T Murray, 2020. "Planning for classroom physical distancing to minimize the threat of COVID-19 disease spread," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-15, December.
  • Handle: RePEc:plo:pone00:0243345
    DOI: 10.1371/journal.pone.0243345
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0243345
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0243345&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0243345?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Richard L. Church & Alan Murray, 2018. "Location Covering Models," Advances in Spatial Science, Springer, number 978-3-319-99846-6, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alan T. Murray & Susan Burtner, 2023. "Physical distancing as an integral component of pandemic response," Letters in Spatial and Resource Sciences, Springer, vol. 16(1), pages 1-17, December.
    2. Larry J. LeBlanc & Thomas A. Grossman & Michael R. Bartolacci, 2024. "Managing the Hyflex Scheduling Activity Using Excel Dynamic Arrays," INFORMS Transactions on Education, INFORMS, vol. 24(3), pages 201-219, May.
    3. Mohammad Reza Bazargan-Lari & Sharareh Taghipour & Arash Zaretalab & Mani Sharifi, 2022. "Production scheduling optimization for parallel machines subject to physical distancing due to COVID-19 pandemic," Operations Management Research, Springer, vol. 15(1), pages 503-527, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiwon Baik & Alan T. Murray, 2022. "Locating a facility to simultaneously address access and coverage goals," Papers in Regional Science, Wiley Blackwell, vol. 101(5), pages 1199-1217, October.
    2. Oscar Lopez Jaramillo & Joel Rinebold & Michael Kuby & Scott Kelley & Darren Ruddell & Rhian Stotts & Aimee Krafft & Elizabeth Wentz, 2021. "Hydrogen Station Location Planning via Geodesign in Connecticut: Comparing Optimization Models and Structured Stakeholder Collaboration," Energies, MDPI, vol. 14(22), pages 1-26, November.
    3. Daniel A. Griffith, 2021. "Articulating Spatial Statistics and Spatial Optimization Relationships: Expanding the Relevance of Statistics," Stats, MDPI, vol. 4(4), pages 1-18, October.
    4. Heewon Chea & Hyun Kim & Shih-Lung Shaw & Yongwan Chun, 2022. "Assessing Trauma Center Accessibility for Healthcare Equity Using an Anti-Covering Approach," IJERPH, MDPI, vol. 19(3), pages 1-21, January.
    5. Xu, Jing & Murray, Alan T. & Church, Richard L. & Wei, Ran, 2023. "Service allocation equity in location coverage analytics," European Journal of Operational Research, Elsevier, vol. 305(1), pages 21-37.
    6. Pludow, B. Amelia & Murray, Alan T. & Church, Richard L., 2022. "Service quality modeling to support optimizing facility location in a microscale environment," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    7. L’udmila Jánošíková & Peter Jankovič & Marek Kvet & Gaston Ivanov & Jakub Holod & Imrich Berta, 2022. "Reorganization of an Emergency Medical System in a Mixed Urban-Rural Area," IJERPH, MDPI, vol. 19(19), pages 1-17, September.
    8. Richard L Church & Carlos A Baez, 2020. "Generating optimal and near-optimal solutions to facility location problems," Environment and Planning B, , vol. 47(6), pages 1014-1030, July.
    9. Blanco, Víctor & Gázquez, Ricardo & Saldanha-da-Gama, Francisco, 2023. "Multi-type maximal covering location problems: Hybridizing discrete and continuous problems," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1040-1054.
    10. Haywood, Adam B. & Lunday, Brian J. & Robbins, Matthew J. & Pachter, Meir N., 2022. "The weighted intruder path covering problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 347-358.
    11. Kayhan Alamatsaz & S. M. T. Fatemi Ghomi & Mehdi Iranpoor, 2021. "Minimal covering unrestricted location of obnoxious facilities: bi-objective formulation and a case study," OPSEARCH, Springer;Operational Research Society of India, vol. 58(2), pages 351-373, June.
    12. Huanfa Chen & Alan T. Murray & Rui Jiang, 2021. "Open-source approaches for location cover models: capabilities and efficiency," Journal of Geographical Systems, Springer, vol. 23(3), pages 361-380, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0243345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.