IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0241197.html
   My bibliography  Save this article

Bayesian variable selection in linear quantile mixed models for longitudinal data with application to macular degeneration

Author

Listed:
  • Yonggang Ji
  • Haifang Shi

Abstract

This paper presents a Bayesian analysis of linear mixed models for quantile regression based on a Cholesky decomposition for the covariance matrix of random effects. We develop a Bayesian shrinkage approach to quantile mixed regression models using a Bayesian adaptive lasso and an extended Bayesian adaptive group lasso. We also consider variable selection procedures for both fixed and random effects in a linear quantile mixed model via the Bayesian adaptive lasso and extended Bayesian adaptive group lasso with spike and slab priors. To improve mixing of the Markov chains, a simple and efficient partially collapsed Gibbs sampling algorithm is developed for posterior inference. Simulation experiments and an application to the Age-Related Macular Degeneration Trial data to demonstrate the proposed methods.

Suggested Citation

  • Yonggang Ji & Haifang Shi, 2020. "Bayesian variable selection in linear quantile mixed models for longitudinal data with application to macular degeneration," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-34, October.
  • Handle: RePEc:plo:pone00:0241197
    DOI: 10.1371/journal.pone.0241197
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0241197
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0241197&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0241197?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Karthik Sriram & Peng Shi & Pulak Ghosh, 2016. "A Bayesian quantile regression model for insurance company costs data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(1), pages 177-202, January.
    2. Harding, Matthew & Lamarche, Carlos, 2009. "A quantile regression approach for estimating panel data models using instrumental variables," Economics Letters, Elsevier, vol. 104(3), pages 133-135, September.
    3. Ivan A. Canay, 2011. "A simple approach to quantile regression for panel data," Econometrics Journal, Royal Economic Society, vol. 14(3), pages 368-386, October.
    4. Koenker, Roger, 2004. "Quantile regression for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 74-89, October.
    5. Graham, Bryan S. & Hahn, Jinyong & Poirier, Alexandre & Powell, James L., 2018. "A quantile correlated random coefficients panel data model," Journal of Econometrics, Elsevier, vol. 206(2), pages 305-335.
    6. Victor Chernozhukov & Iván Fernández‐Val & Jinyong Hahn & Whitney Newey, 2013. "Average and Quantile Effects in Nonseparable Panel Models," Econometrica, Econometric Society, vol. 81(2), pages 535-580, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weixian Wang & Maozai Tian, 2024. "Variational Bayesian EM Algorithm for Quantile Regression in Linear Mixed Effects Models," Mathematics, MDPI, vol. 12(21), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Galvao, Antonio F. & Gu, Jiaying & Volgushev, Stanislav, 2020. "On the unbiased asymptotic normality of quantile regression with fixed effects," Journal of Econometrics, Elsevier, vol. 218(1), pages 178-215.
    2. Georges Bresson & Guy Lacroix & Mohammad Arshad Rahman, 2021. "Bayesian panel quantile regression for binary outcomes with correlated random effects: an application on crime recidivism in Canada," Empirical Economics, Springer, vol. 60(1), pages 227-259, January.
    3. Xiao, Zhijie & Xu, Lan, 2019. "What do mean impacts miss? Distributional effects of corporate diversification," Journal of Econometrics, Elsevier, vol. 213(1), pages 92-120.
    4. Harding, Matthew & Lamarche, Carlos, 2014. "Estimating and testing a quantile regression model with interactive effects," Journal of Econometrics, Elsevier, vol. 178(P1), pages 101-113.
    5. Xin Liu, 2024. "A quantile-based nonadditive fixed effects model," Papers 2405.03826, arXiv.org.
    6. Matthew Harding & Carlos Lamarche, 2017. "Penalized Quantile Regression with Semiparametric Correlated Effects: An Application with Heterogeneous Preferences," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 342-358, March.
    7. Jungmo Yoon & Antonio F. Galvao, 2020. "Cluster robust covariance matrix estimation in panel quantile regression with individual fixed effects," Quantitative Economics, Econometric Society, vol. 11(2), pages 579-608, May.
    8. Liang Chen, 2019. "Nonparametric Quantile Regressions for Panel Data Models with Large T," Papers 1911.01824, arXiv.org, revised Sep 2020.
    9. Sherrilyn Billger & Carlos Lamarche, 2015. "A panel data quantile regression analysis of the immigrant earnings distribution in the United Kingdom and United States," Empirical Economics, Springer, vol. 49(2), pages 705-750, September.
    10. Li, Tong & Oka, Tatsushi, 2015. "Set identification of the censored quantile regression model for short panels with fixed effects," Journal of Econometrics, Elsevier, vol. 188(2), pages 363-377.
    11. Travis A. Smith, 2017. "Do School Food Programs Improve Child Dietary Quality?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 99(2), pages 339-356.
    12. Baruník, Jozef & Čech, František, 2021. "Measurement of common risks in tails: A panel quantile regression model for financial returns," Journal of Financial Markets, Elsevier, vol. 52(C).
    13. Antonio F. Galvao & Thomas Parker & Zhijie Xiao, 2024. "Bootstrap Inference for Panel Data Quantile Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(2), pages 628-639, April.
    14. Chernozhukov, Victor & Fernández-Val, Iván & Weidner, Martin, 2024. "Network and panel quantile effects via distribution regression," Journal of Econometrics, Elsevier, vol. 240(2).
    15. Frantisek Cech & Jozef Barunik, 2017. "Measurement of Common Risk Factors: A Panel Quantile Regression Model for Returns," Working Papers IES 2017/20, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Sep 2017.
    16. Panagiotidis, Theodore & Printzis, Panagiotis, 2021. "Investment and uncertainty: Are large firms different from small ones?," Journal of Economic Behavior & Organization, Elsevier, vol. 184(C), pages 302-317.
    17. Graham, Bryan S. & Hahn, Jinyong & Poirier, Alexandre & Powell, James L., 2018. "A quantile correlated random coefficients panel data model," Journal of Econometrics, Elsevier, vol. 206(2), pages 305-335.
    18. Stefano Bianchini & Federico Tamagni & Gabriele Pellegrino, 2016. "Innovation strategies and firm growth," Working Papers 2016/10, Institut d'Economia de Barcelona (IEB).
    19. Dogan, Eyup & Altinoz, Buket & Tzeremes, Panayiotis, 2020. "The analysis of ‘Financial Resource Curse’ hypothesis for developed countries: Evidence from asymmetric effects with quantile regression," Resources Policy, Elsevier, vol. 68(C).
    20. Dogan, Eyup & Altinoz, Buket & Madaleno, Mara & Taskin, Dilvin, 2020. "The impact of renewable energy consumption to economic growth: A replication and extension of Inglesi-Lotz (2016)," Energy Economics, Elsevier, vol. 90(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0241197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.