IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0239960.html
   My bibliography  Save this article

Prediction and analysis of Corona Virus Disease 2019

Author

Listed:
  • Yan Hao
  • Ting Xu
  • Hongping Hu
  • Peng Wang
  • Yanping Bai

Abstract

The outbreak of Corona Virus Disease 2019 (COVID-19) in Wuhan has significantly impacted the economy and society globally. Countries are in a strict state of prevention and control of this pandemic. In this study, the development trend analysis of the cumulative confirmed cases, cumulative deaths, and cumulative cured cases was conducted based on data from Wuhan, Hubei Province, China from January 23, 2020 to April 6, 2020 using an Elman neural network, long short-term memory (LSTM), and support vector machine (SVM). A SVM with fuzzy granulation was used to predict the growth range of confirmed new cases, new deaths, and new cured cases. The experimental results showed that the Elman neural network and SVM used in this study can predict the development trend of cumulative confirmed cases, deaths, and cured cases, whereas LSTM is more suitable for the prediction of the cumulative confirmed cases. The SVM with fuzzy granulation can successfully predict the growth range of confirmed new cases and new cured cases, although the average predicted values are slightly large. Currently, the United States is the epicenter of the COVID-19 pandemic. We also used data modeling from the United States to further verify the validity of the proposed models.

Suggested Citation

  • Yan Hao & Ting Xu & Hongping Hu & Peng Wang & Yanping Bai, 2020. "Prediction and analysis of Corona Virus Disease 2019," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-15, October.
  • Handle: RePEc:plo:pone00:0239960
    DOI: 10.1371/journal.pone.0239960
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0239960
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0239960&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0239960?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Evan L Ray & Nicholas G Reich, 2018. "Prediction of infectious disease epidemics via weighted density ensembles," PLOS Computational Biology, Public Library of Science, vol. 14(2), pages 1-23, February.
    2. Bai, Yanping & Jin, Zhen, 2005. "Prediction of SARS epidemic by BP neural networks with online prediction strategy," Chaos, Solitons & Fractals, Elsevier, vol. 26(2), pages 559-569.
    3. Cleo Anastassopoulou & Lucia Russo & Athanasios Tsakris & Constantinos Siettos, 2020. "Data-based analysis, modelling and forecasting of the COVID-19 outbreak," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dillon, Mary & Vauhkonen, Ilmari & Arvas, Mikko & Ihalainen, Jarkko & Vilkkumaa, Eeva & Oliveira, Fabricio, 2023. "Supporting platelet inventory management decisions: What is the effect of extending platelets’ shelf life?," European Journal of Operational Research, Elsevier, vol. 310(2), pages 640-654.
    2. Rujeerapaiboon, Napat & Zhong, Yuanguang & Zhu, Dan, 2023. "Resilience of long chain under disruption," European Journal of Operational Research, Elsevier, vol. 309(2), pages 597-615.
    3. Khezar Hayat & Meagen Rosenthal & Sen Xu & Muhammad Arshed & Pengchao Li & Panpan Zhai & Gebrehaweria Kassa Desalegn & Yu Fang, 2020. "View of Pakistani Residents toward Coronavirus Disease (COVID-19) during a Rapid Outbreak: A Rapid Online Survey," IJERPH, MDPI, vol. 17(10), pages 1-10, May.
    4. Adam Goliński & Peter Spencer, 2021. "Modeling the Covid‐19 epidemic using time series econometrics," Health Economics, John Wiley & Sons, Ltd., vol. 30(11), pages 2808-2828, November.
    5. Muqrin A. Almuqrin & Mukhtar M. Salah & Essam A. Ahmed, 2022. "Statistical Inference for Competing Risks Model with Adaptive Progressively Type-II Censored Gompertz Life Data Using Industrial and Medical Applications," Mathematics, MDPI, vol. 10(22), pages 1-38, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Tailei & Teng, Zhidong, 2008. "Global asymptotic stability of a delayed SEIRS epidemic model with saturation incidence," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1456-1468.
    2. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "Dynamic tracking with model-based forecasting for the spread of the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    3. Fantazzini, Dean, 2020. "Short-term forecasting of the COVID-19 pandemic using Google Trends data: Evidence from 158 countries," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 59, pages 33-54.
    4. Pau Fonseca i Casas & Joan Garcia i Subirana & Víctor García i Carrasco & Xavier Pi i Palomés, 2021. "SARS-CoV-2 Spread Forecast Dynamic Model Validation through Digital Twin Approach, Catalonia Case Study," Mathematics, MDPI, vol. 9(14), pages 1-17, July.
    5. Guerra, Fábio A. & Coelho, Leandro dos S., 2008. "Multi-step ahead nonlinear identification of Lorenz’s chaotic system using radial basis neural network with learning by clustering and particle swarm optimization," Chaos, Solitons & Fractals, Elsevier, vol. 35(5), pages 967-979.
    6. Srinka Basu & Sugata Sen, 2023. "COVID 19 Pandemic, Socio-Economic Behaviour and Infection Characteristics: An Inter-Country Predictive Study Using Deep Learning," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 645-676, February.
    7. Bhardwaj, Rashmi & Bangia, Aashima, 2020. "Data driven estimation of novel COVID-19 transmission risks through hybrid soft-computing techniques," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    8. Musa Ganaka Kubi & Son-Allah Mallaka Philemon & Olope Ganiu Ibrahim, 2020. "Forecasting the Confirmed Cases of COVID-19 in Selected West African Countries Using ARIMA Model Technique," International Journal of Research and Innovation in Applied Science, International Journal of Research and Innovation in Applied Science (IJRIAS), vol. 5(8), pages 141-144, August.
    9. Junyi Lu & Sebastian Meyer, 2020. "Forecasting Flu Activity in the United States: Benchmarking an Endemic-Epidemic Beta Model," IJERPH, MDPI, vol. 17(4), pages 1-13, February.
    10. Umar Albalawi & Mohammed Mustafa, 2022. "Current Artificial Intelligence (AI) Techniques, Challenges, and Approaches in Controlling and Fighting COVID-19: A Review," IJERPH, MDPI, vol. 19(10), pages 1-24, May.
    11. Yiannakoulias, Nikolaos & Slavik, Catherine E. & Sturrock, Shelby L. & Darlington, J. Connor, 2020. "Open government data, uncertainty and coronavirus: An infodemiological case study," Social Science & Medicine, Elsevier, vol. 265(C).
    12. Roland Pongou & Guy Tchuente & Jean-Baptiste Tondji, 2020. "An Economic Model of Health-vs-Wealth Prioritization During COVID-19: Optimal Lockdown, Network Centrality, and Segregation," Working Papers 2009E Classification-E61,, University of Ottawa, Department of Economics.
    13. Han, Zhimin & Wang, Yi & Cao, Jinde, 2023. "Impact of contact heterogeneity on initial growth behavior of an epidemic: Complex network-based approach," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    14. Marco Gribaudo & Mauro Iacono & Daniele Manini, 2021. "COVID-19 Spatial Diffusion: A Markovian Agent-Based Model," Mathematics, MDPI, vol. 9(5), pages 1-12, February.
    15. Dorn, Florian & Lange, Berit & Braml, Martin & Gstrein, David & Nyirenda, John L.Z. & Vanella, Patrizio & Winter, Joachim & Fuest, Clemens & Krause, Gérard, 2023. "The challenge of estimating the direct and indirect effects of COVID-19 interventions – Toward an integrated economic and epidemiological approach," Economics & Human Biology, Elsevier, vol. 49(C).
    16. Bekiros, Stelios & Kouloumpou, Dimitra, 2020. "SBDiEM: A new mathematical model of infectious disease dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    17. Mahmoud M. Mansour & Mohammed A. Farsi & Salah M. Mohamed & Enayat M. Abd Elrazik, 2021. "Modeling the COVID-19 Pandemic Dynamics in Egypt and Saudi Arabia," Mathematics, MDPI, vol. 9(8), pages 1-13, April.
    18. Kevin Pacheco-Barrios & Alejandra Cardenas-Rojas & Stefano Giannoni-Luza & Felipe Fregni, 2020. "COVID-19 pandemic and Farr’s law: A global comparison and prediction of outbreak acceleration and deceleration rates," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-25, September.
    19. Daniel Garcia-Vicuña & Laida Esparza & Fermin Mallor, 2022. "Hospital preparedness during epidemics using simulation: the case of COVID-19," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(1), pages 213-249, March.
    20. Li, Shaoran & Linton, Oliver, 2021. "When will the Covid-19 pandemic peak?," Journal of Econometrics, Elsevier, vol. 220(1), pages 130-157.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0239960. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.