IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v26y2005i2p559-569.html
   My bibliography  Save this article

Prediction of SARS epidemic by BP neural networks with online prediction strategy

Author

Listed:
  • Bai, Yanping
  • Jin, Zhen

Abstract

The method of predicting BP neural networks is used for SARS epidemic to improve the existing computational methods, and better accuracy of prediction is achieved. A suitable momentum term is added to BP algorithm to accelerate the convergence speed. An online prediction strategy is applied to monitor the training and predicting process. We have achieved a series of predicting results of SARS epidemic about Beijing and Shanxi in China.

Suggested Citation

  • Bai, Yanping & Jin, Zhen, 2005. "Prediction of SARS epidemic by BP neural networks with online prediction strategy," Chaos, Solitons & Fractals, Elsevier, vol. 26(2), pages 559-569.
  • Handle: RePEc:eee:chsofr:v:26:y:2005:i:2:p:559-569
    DOI: 10.1016/j.chaos.2005.01.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905001128
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.01.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pang, Guoping & Chen, Lansun, 2007. "A delayed SIRS epidemic model with pulse vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1629-1635.
    2. Srinka Basu & Sugata Sen, 2023. "COVID 19 Pandemic, Socio-Economic Behaviour and Infection Characteristics: An Inter-Country Predictive Study Using Deep Learning," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 645-676, February.
    3. Bekiros, Stelios & Kouloumpou, Dimitra, 2020. "SBDiEM: A new mathematical model of infectious disease dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    4. Zhang, Tailei & Teng, Zhidong, 2008. "Global asymptotic stability of a delayed SEIRS epidemic model with saturation incidence," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1456-1468.
    5. Awawdeh, Fadi & Adawi, A. & Mustafa, Z., 2009. "Solutions of the SIR models of epidemics using HAM," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3047-3052.
    6. Yan Hao & Ting Xu & Hongping Hu & Peng Wang & Yanping Bai, 2020. "Prediction and analysis of Corona Virus Disease 2019," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-15, October.
    7. Wu, Yucui & Zhang, Zhipeng & Song, Limei & Xia, Chengyi, 2024. "Global stability analysis of two strains epidemic model with imperfect vaccination and immunity waning in a complex network," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    8. Bai, Yanping & Zhang, Haixia & Hao, Yilong, 2009. "The performance of the backpropagation algorithm with varying slope of the activation function," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 69-77.
    9. Guerra, Fábio A. & Coelho, Leandro dos S., 2008. "Multi-step ahead nonlinear identification of Lorenz’s chaotic system using radial basis neural network with learning by clustering and particle swarm optimization," Chaos, Solitons & Fractals, Elsevier, vol. 35(5), pages 967-979.
    10. Ya Li & Zhanguo Wei, 2022. "Regional Logistics Demand Prediction: A Long Short-Term Memory Network Method," Sustainability, MDPI, vol. 14(20), pages 1-17, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:26:y:2005:i:2:p:559-569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.