IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v443y2016icp467-476.html
   My bibliography  Save this article

Minimum structural controllability problems of complex networks

Author

Listed:
  • Yin, Hongli
  • Zhang, Siying

Abstract

Controllability of complex networks has been one of the attractive research areas for both network and control community, and has yielded many promising and significant results in minimum inputs and minimum driver vertices. However, few studies have been devoted to studying the minimum controlled vertex set through which control over the network with arbitrary structure can be achieved. In this paper, we prove that the minimum driver vertices driven by different inputs are not sufficient to ensure the full control of the network when the associated graph contains the inaccessible strongly connected component which has perfect matching and propose an algorithm to identify a minimum controlled vertex set for network with arbitrary structure using convenient graph and mathematical tools. And the simulation results show that the controllability of network is correlated to the number of inaccessible strongly connected components which have perfect matching and these results promote us to better understand the relationship between the network’s structural characteristics and its control.

Suggested Citation

  • Yin, Hongli & Zhang, Siying, 2016. "Minimum structural controllability problems of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 467-476.
  • Handle: RePEc:eee:phsmap:v:443:y:2016:i:c:p:467-476
    DOI: 10.1016/j.physa.2015.09.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115007372
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.09.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Noah J Cowan & Erick J Chastain & Daril A Vilhena & James S Freudenberg & Carl T Bergstrom, 2012. "Nodal Dynamics, Not Degree Distributions, Determine the Structural Controllability of Complex Networks," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-5, June.
    2. Wang, Hui & Huang, Jinyuan & Xu, Xiaomin & Xiao, Yanghua, 2014. "Damage attack on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 134-148.
    3. Yang Tang & Huijun Gao & Wei Zou & Jürgen Kurths, 2012. "Identifying Controlling Nodes in Neuronal Networks in Different Scales," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-13, July.
    4. Yan, Xin & Wu, Yang & Li, Xiaohui & Li, Chunlin & Hu, Yaogai, 2014. "Eigenvector perturbations of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 106-118.
    5. Colman, E.R. & Rodgers, G.J., 2014. "Local rewiring rules for evolving complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 80-89.
    6. Yang-Yu Liu & Jean-Jacques Slotine & Albert-László Barabási, 2011. "Controllability of complex networks," Nature, Nature, vol. 473(7346), pages 167-173, May.
    7. Yang-Yu Liu & Jean-Jacques Slotine & Albert-László Barabási, 2012. "Control Centrality and Hierarchical Structure in Complex Networks," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-7, September.
    8. Pu, Cun-Lai & Pei, Wen-Jiang & Michaelson, Andrew, 2012. "Robustness analysis of network controllability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(18), pages 4420-4425.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Jin & Lu, Yong-Zai & Chu, Jian, 2013. "Studies on controllability of directed networks with extremal optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6603-6615.
    2. Chen, Shi-Ming & Xu, Yun-Fei & Nie, Sen, 2017. "Robustness of network controllability in cascading failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 536-539.
    3. Li, Jian & Dueñas-Osorio, Leonardo & Chen, Changkun & Berryhill, Benjamin & Yazdani, Alireza, 2016. "Characterizing the topological and controllability features of U.S. power transmission networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 84-98.
    4. Li, Xin-Feng & Lu, Zhe-Ming, 2016. "Optimizing the controllability of arbitrary networks with genetic algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 422-433.
    5. Nie, Sen & Wang, Xuwen & Wang, Binghong, 2015. "Effect of degree correlation on exact controllability of multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 98-102.
    6. Han, Fangyuan & Zio, Enrico, 2019. "A multi-perspective framework of analysis of critical infrastructures with respect to supply service, controllability and topology," International Journal of Critical Infrastructure Protection, Elsevier, vol. 24(C), pages 1-13.
    7. Yan Zhang & Antonios Garas & Frank Schweitzer, 2019. "Control Contribution Identifies Top Driver Nodes In Complex Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(07n08), pages 1-15, December.
    8. Hu, Ying & Yu, Yang & Mardani, Abbas, 2021. "Selection of carbon emissions control industries in China: An approach based on complex networks control perspective," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    9. Li, Sheng & Liu, Wenwen & Wu, Ruizi & Li, Junli, 2023. "An adaptive attack model to network controllability," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    10. Li, Jian & Dueñas-Osorio, Leonardo & Chen, Changkun & Shi, Congling, 2016. "Connectivity reliability and topological controllability of infrastructure networks: A comparative assessment," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 24-33.
    11. Wenpin Hou & Takeyuki Tamura & Wai-Ki Ching & Tatsuya Akutsu, 2016. "Finding And Analyzing The Minimum Set Of Driver Nodes In Control Of Boolean Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 1-32, May.
    12. Guilherme Ramos & Sérgio Pequito, 2020. "Generating complex networks with time-to-control communities," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-12, August.
    13. Wang, Jiqiang, 2019. "Disturbance attenuation of complex dynamical systems through interaction topology design," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 576-584.
    14. Cai, Ning, 2017. "On quantitatively measuring controllability of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 282-292.
    15. Babak Ravandi & Forough S. Ansari & Fatma Mili, 2020. "Controllability Analysis Of Complex Networks Using Statistical Random Sampling," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(07n08), pages 1-15, January.
    16. Xiaoqian Sun & Sebastian Wandelt & Xianbin Cao, 2017. "On Node Criticality in Air Transportation Networks," Networks and Spatial Economics, Springer, vol. 17(3), pages 737-761, September.
    17. Yang, Xu-Hua & Chen, Guang & Chen, Sheng-Yong, 2013. "The impact of connection density on scale-free distribution in random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2547-2554.
    18. Jiao, Bo & Nie, Yuan-ping & Shi, Jian-mai & Huang, Cheng-dong & Zhou, Ying & Du, Jing & Guo, Rong-hua & Tao, Ye-rong, 2016. "Scaling of weighted spectral distribution in deterministic scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 632-645.
    19. Aming Li & Yang-Yu Liu, 2020. "Controlling Network Dynamics," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(07n08), pages 1-19, February.
    20. Wei, Bo & Liu, Jie & Wei, Daijun & Gao, Cai & Deng, Yong, 2015. "Weighted k-shell decomposition for complex networks based on potential edge weights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 277-283.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:443:y:2016:i:c:p:467-476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.