IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i3p331-d730578.html
   My bibliography  Save this article

Controllability of Brain Neural Networks in Learning Disorders—A Geometric Approach

Author

Listed:
  • Maria Isabel García-Planas

    (Departament de Matemàtiques, Universitat Politècnica de Catalunya, 08028 Barcelona, Spain)

  • Maria Victoria García-Camba

    (Neurofisiología Clínica, Clínica Corachan, 08017 Barcelona, Spain)

Abstract

The human brain can be interpreted mathematically as a linear dynamical system that shifts through various cognitive regions promoting more or less complicated behaviors. The dynamics of brain neural network play a considerable role in cognitive function and therefore of interest in the bid to understand the learning processes and the evolution of possible disorders. The mathematical theory of systems and control makes available procedures, concepts, and criteria that can be applied to ease the perception of the dynamic processes that administer the evolution of the brain with learning and its control with treatment in case of disorder. In this work, a geometric study through the conception of exact controllability is comprehended to detect the minimum set and the location of the driving nodes of learning. We will describe the different roles of the nodes in the control of the paths of brain networks and show the transition of some driving nodes and the preservation of the rest in the course of learning in patients with some learning disability.

Suggested Citation

  • Maria Isabel García-Planas & Maria Victoria García-Camba, 2022. "Controllability of Brain Neural Networks in Learning Disorders—A Geometric Approach," Mathematics, MDPI, vol. 10(3), pages 1-13, January.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:3:p:331-:d:730578
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/3/331/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/3/331/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shi Gu & Fabio Pasqualetti & Matthew Cieslak & Qawi K. Telesford & Alfred B. Yu & Ari E. Kahn & John D. Medaglia & Jean M. Vettel & Michael B. Miller & Scott T. Grafton & Danielle S. Bassett, 2015. "Controllability of structural brain networks," Nature Communications, Nature, vol. 6(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tadić, Bosiljka & Chutani, Malayaja & Gupte, Neelima, 2022. "Multiscale fractality in partial phase synchronisation on simplicial complexes around brain hubs," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    2. Ociepka, Michał & Kałamała, Patrycja & Chuderski, Adam, 2022. "High individual alpha frequency brains run fast, but it does not make them smart," Intelligence, Elsevier, vol. 92(C).
    3. Huili Sun & Rongtao Jiang & Wei Dai & Alexander J. Dufford & Stephanie Noble & Marisa N. Spann & Shi Gu & Dustin Scheinost, 2023. "Network controllability of structural connectomes in the neonatal brain," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. S. Parker Singleton & Andrea I. Luppi & Robin L. Carhart-Harris & Josephine Cruzat & Leor Roseman & David J. Nutt & Gustavo Deco & Morten L. Kringelbach & Emmanuel A. Stamatakis & Amy Kuceyeski, 2022. "Receptor-informed network control theory links LSD and psilocybin to a flattening of the brain’s control energy landscape," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Zurrin, Riley & Wong, Samantha Tze Sum & Roes, Meighen M. & Percival, Chantal M. & Chinchani, Abhijit & Arreaza, Leo & Kusi, Mavis & Momeni, Ava & Rasheed, Maiya & Mo, Zhaoyi & Goghari, Vina M. & Wood, 2024. "Functional brain networks involved in the Raven's standard progressive matrices task and their relation to theories of fluid intelligence," Intelligence, Elsevier, vol. 103(C).
    6. Dian Lyu & Shruti Naik & David K. Menon & Emmanuel A. Stamatakis, 2022. "Intrinsic brain dynamics in the Default Mode Network predict involuntary fluctuations of visual awareness," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Richard F Betzel & Katherine C Wood & Christopher Angeloni & Maria Neimark Geffen & Danielle S Bassett, 2019. "Stability of spontaneous, correlated activity in mouse auditory cortex," PLOS Computational Biology, Public Library of Science, vol. 15(12), pages 1-25, December.
    8. Guilherme Ramos & Sérgio Pequito, 2020. "Generating complex networks with time-to-control communities," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-12, August.
    9. Bruton, Oliver J., 2021. "Is there a “g-neuron”? Establishing a systematic link between general intelligence (g) and the von Economo neuron," Intelligence, Elsevier, vol. 86(C).
    10. Elizabeth L. Johnson & Jack J. Lin & David King-Stephens & Peter B. Weber & Kenneth D. Laxer & Ignacio Saez & Fady Girgis & Mark D’Esposito & Robert T. Knight & David Badre, 2023. "A rapid theta network mechanism for flexible information encoding," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    11. Dhruv Saxena & Alexis Arnaudon & Oscar Cipolato & Michele Gaio & Alain Quentel & Sophia Yaliraki & Dario Pisignano & Andrea Camposeo & Mauricio Barahona & Riccardo Sapienza, 2022. "Sensitivity and spectral control of network lasers," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    12. Tu, Jin-cheng & Lu, Hou-qing & Lu, Tian-ming & Xie, Zong-qiao & Lu, Lei & Wei, Lingxiang, 2024. "A graphical criterion for the controllability in temporal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 646(C).
    13. Atsushi Kikumoto & Apoorva Bhandari & Kazuhisa Shibata & David Badre, 2024. "A transient high-dimensional geometry affords stable conjunctive subspaces for efficient action selection," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:3:p:331-:d:730578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.