IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v371y2006i2p658-666.html
   My bibliography  Save this article

Evacuation behaviors at exit in CA model with force essentials: A comparison with social force model

Author

Listed:
  • Wei-Guo, Song
  • Yan-Fei, Yu
  • Bing-Hong, Wang
  • Wei-Cheng, Fan

Abstract

The problem of emergent evacuation is of obvious importance in common life. However, many existing evacuation models are either computationally inefficient, or are missing some crucial human behaviors in crowds. In this paper, we improve a cellular automata (CA) model introduced recently, which quantifies evacuation process with three basic forces, and compare its performance with the social force model introduced by Helbing et al. in an 200-people evacuation of a single-exit square room. The main characteristics compared include arching, clogging and faster-is-slower behaviors, as well as the evacuation time. The results show that the two models are comparable in all calculations, indicating that the three forces, i.e., repulsion, friction and attraction, are basic reasons for complex behaviors emerged from evacuation. Furthermore, because of its simple rules and fast calculation speed, the discussed CA model is easily analyzed and is very helpful to the applications.

Suggested Citation

  • Wei-Guo, Song & Yan-Fei, Yu & Bing-Hong, Wang & Wei-Cheng, Fan, 2006. "Evacuation behaviors at exit in CA model with force essentials: A comparison with social force model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 658-666.
  • Handle: RePEc:eee:phsmap:v:371:y:2006:i:2:p:658-666
    DOI: 10.1016/j.physa.2006.03.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437106003633
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2006.03.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Varas, A. & Cornejo, M.D. & Mainemer, D. & Toledo, B. & Rogan, J. & Muñoz, V. & Valdivia, J.A., 2007. "Cellular automaton model for evacuation process with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 631-642.
    2. Fu, Zhijian & Zhou, Xiaodong & Zhu, Kongjin & Chen, Yanqiu & Zhuang, Yifan & Hu, Yuqi & Yang, Lizhong & Chen, Changkun & Li, Jian, 2015. "A floor field cellular automaton for crowd evacuation considering different walking abilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 294-303.
    3. Cao, Shuchao & Song, Weiguo & Lv, Wei & Fang, Zhiming, 2015. "A multi-grid model for pedestrian evacuation in a room without visibility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 45-61.
    4. Feliciani, Claudio & Nishinari, Katsuhiro, 2016. "An improved Cellular Automata model to simulate the behavior of high density crowd and validation by experimental data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 135-148.
    5. Haghani, Milad & Sarvi, Majid, 2017. "Social dynamics in emergency evacuations: Disentangling crowd’s attraction and repulsion effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 475(C), pages 24-34.
    6. Namilae, S. & Srinivasan, A. & Mubayi, A. & Scotch, M. & Pahle, R., 2017. "Self-propelled pedestrian dynamics model: Application to passenger movement and infection propagation in airplanes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 248-260.
    7. Pierrot Derjany & Sirish Namilae & Dahai Liu & Ashok Srinivasan, 2020. "Multiscale model for the optimal design of pedestrian queues to mitigate infectious disease spread," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-21, July.
    8. Tang, Ming & Jia, Hongfei & Ran, Bin & Li, Jun, 2016. "Analysis of the pedestrian arching at bottleneck based on a bypassing behavior model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 242-258.
    9. Fu, Zhijian & Luo, Lin & Yang, Yue & Zhuang, Yifan & Zhang, Peitong & Yang, Lizhong & Yang, Hongtai & Ma, Jian & Zhu, Kongjin & Li, Yanlai, 2016. "Effect of speed matching on fundamental diagram of pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 31-42.
    10. Sticco, I.M. & Frank, G.A. & Dorso, C.O., 2021. "Social Force Model parameter testing and optimization using a high stress real-life situation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:371:y:2006:i:2:p:658-666. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.