IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0229185.html
   My bibliography  Save this article

Contrast versus identity encoding in the face image follow distinct orientation selectivity profiles

Author

Listed:
  • Christianne Jacobs
  • Kirsten Petras
  • Pieter Moors
  • Valerie Goffaux

Abstract

Orientation selectivity is a fundamental property of primary visual encoding. High-level processing stages also show some form of orientation dependence, with face identification preferentially relying on horizontally-oriented information. How high-level orientation tuning emerges from primary orientation biases is unclear. In the same group of participants, we derived the orientation selectivity profile at primary and high-level visual processing stages using a contrast detection and an identity matching task. To capture the orientation selectivity profile, we calculated the difference in performance between all tested orientations (0, 45, 90, and 135°) for each task and for upright and inverted faces, separately. Primary orientation selectivity was characterized by higher sensitivity to oblique as compared to cardinal orientations. The orientation profile of face identification showed superior horizontal sensitivity to face identity. In each task, performance with upright and inverted faces projected onto qualitatively similar a priori models of orientation selectivity. Yet the fact that the orientation selectivity profiles of contrast detection in upright and inverted faces correlated significantly while such correlation was absent for identification indicates a progressive dissociation of orientation selectivity profiles from primary to high-level stages of orientation encoding. Bayesian analyses further indicate a lack of correlation between the orientation selectivity profiles in the contrast detection and face identification tasks, for upright and inverted faces. From these findings, we conclude that orientation selectivity shows distinct profiles at primary and high-level stages of face processing and that a transformation must occur from general cardinal attenuation when processing basic properties of the face image to horizontal tuning when encoding more complex properties such as identity.

Suggested Citation

  • Christianne Jacobs & Kirsten Petras & Pieter Moors & Valerie Goffaux, 2020. "Contrast versus identity encoding in the face image follow distinct orientation selectivity profiles," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-22, March.
  • Handle: RePEc:plo:pone00:0229185
    DOI: 10.1371/journal.pone.0229185
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0229185
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0229185&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0229185?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hamed Nili & Cai Wingfield & Alexander Walther & Li Su & William Marslen-Wilson & Nikolaus Kriegeskorte, 2014. "A Toolbox for Representational Similarity Analysis," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-11, April.
    2. Matthias S Keil, 2009. "“I Look in Your Eyes, Honey”: Internal Face Features Induce Spatial Frequency Preference for Human Face Processing," PLOS Computational Biology, Public Library of Science, vol. 5(3), pages 1-13, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valentina Krenz & Arjen Alink & Tobias Sommer & Benno Roozendaal & Lars Schwabe, 2023. "Time-dependent memory transformation in hippocampus and neocortex is semantic in nature," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Satoko Amemori & Ann M. Graybiel & Ken-ichi Amemori, 2024. "Cingulate microstimulation induces negative decision-making via reduced top-down influence on primate fronto-cingulo-striatal network," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Julia Berezutskaya & Zachary V Freudenburg & Umut Güçlü & Marcel A J van Gerven & Nick F Ramsey, 2020. "Brain-optimized extraction of complex sound features that drive continuous auditory perception," PLOS Computational Biology, Public Library of Science, vol. 16(7), pages 1-34, July.
    4. Antonino Greco & Julia Moser & Hubert Preissl & Markus Siegel, 2024. "Predictive learning shapes the representational geometry of the human brain," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Manoj Kumar & Cameron T Ellis & Qihong Lu & Hejia Zhang & Mihai Capotă & Theodore L Willke & Peter J Ramadge & Nicholas B Turk-Browne & Kenneth A Norman, 2020. "BrainIAK tutorials: User-friendly learning materials for advanced fMRI analysis," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-12, January.
    6. Hamed Nili & Alexander Walther & Arjen Alink & Nikolaus Kriegeskorte, 2020. "Inferring exemplar discriminability in brain representations," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-28, June.
    7. Katherine R. Storrs & Barton L. Anderson & Roland W. Fleming, 2021. "Unsupervised learning predicts human perception and misperception of gloss," Nature Human Behaviour, Nature, vol. 5(10), pages 1402-1417, October.
    8. Agustin Lage-Castellanos & Giancarlo Valente & Elia Formisano & Federico De Martino, 2019. "Methods for computing the maximum performance of computational models of fMRI responses," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-25, March.
    9. Sreejan Kumar & Theodore R. Sumers & Takateru Yamakoshi & Ariel Goldstein & Uri Hasson & Kenneth A. Norman & Thomas L. Griffiths & Robert D. Hawkins & Samuel A. Nastase, 2024. "Shared functional specialization in transformer-based language models and the human brain," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    10. Ming Bo Cai & Nicolas W Schuck & Jonathan W Pillow & Yael Niv, 2019. "Representational structure or task structure? Bias in neural representational similarity analysis and a Bayesian method for reducing bias," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-30, May.
    11. L Jack Rhodes & Matthew Ríos & Jacob Williams & Gonzalo Quiñones & Prahalada K Rao & Vladimir Miskovic, 2019. "The role of low-level image features in the affective categorization of rapidly presented scenes," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-17, May.
    12. Thomas Brudermann & Gregory Bartel & Thomas Fenzl & Sebastian Seebauer, 2015. "Eyes on social norms: A field study on an honor system for newspaper sale," Theory and Decision, Springer, vol. 79(2), pages 285-306, September.
    13. Felix Fuentes-Hurtado & Jose A. Diego-Mas & Valery Naranjo & Mariano Alcañiz, 2018. "Evolutionary Computation for Modelling Social Traits in Realistic Looking Synthetic Faces," Complexity, Hindawi, vol. 2018, pages 1-16, October.
    14. Cai Wingfield & Li Su & Xunying Liu & Chao Zhang & Phil Woodland & Andrew Thwaites & Elisabeth Fonteneau & William D Marslen-Wilson, 2017. "Relating dynamic brain states to dynamic machine states: Human and machine solutions to the speech recognition problem," PLOS Computational Biology, Public Library of Science, vol. 13(9), pages 1-25, September.
    15. Michael F Bonner & Russell A Epstein, 2018. "Computational mechanisms underlying cortical responses to the affordance properties of visual scenes," PLOS Computational Biology, Public Library of Science, vol. 14(4), pages 1-31, April.
    16. Sebastian P. H. Speer & Laetitia Mwilambwe-Tshilobo & Lily Tsoi & Shannon M. Burns & Emily B. Falk & Diana I. Tamir, 2024. "Hyperscanning shows friends explore and strangers converge in conversation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    17. Máté Aller & Agoston Mihalik & Uta Noppeney, 2022. "Audiovisual adaptation is expressed in spatial and decisional codes," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    18. Jörn Diedrichsen & Nikolaus Kriegeskorte, 2017. "Representational models: A common framework for understanding encoding, pattern-component, and representational-similarity analysis," PLOS Computational Biology, Public Library of Science, vol. 13(4), pages 1-33, April.
    19. Haider Al-Tahan & Yalda Mohsenzadeh, 2021. "Reconstructing feedback representations in the ventral visual pathway with a generative adversarial autoencoder," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-19, March.
    20. Benjamin Lahner & Kshitij Dwivedi & Polina Iamshchinina & Monika Graumann & Alex Lascelles & Gemma Roig & Alessandro Thomas Gifford & Bowen Pan & SouYoung Jin & N. Apurva Ratan Murty & Kendrick Kay & , 2024. "Modeling short visual events through the BOLD moments video fMRI dataset and metadata," Nature Communications, Nature, vol. 15(1), pages 1-26, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0229185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.