IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006111.html
   My bibliography  Save this article

Computational mechanisms underlying cortical responses to the affordance properties of visual scenes

Author

Listed:
  • Michael F Bonner
  • Russell A Epstein

Abstract

Biologically inspired deep convolutional neural networks (CNNs), trained for computer vision tasks, have been found to predict cortical responses with remarkable accuracy. However, the internal operations of these models remain poorly understood, and the factors that account for their success are unknown. Here we develop a set of techniques for using CNNs to gain insights into the computational mechanisms underlying cortical responses. We focused on responses in the occipital place area (OPA), a scene-selective region of dorsal occipitoparietal cortex. In a previous study, we showed that fMRI activation patterns in the OPA contain information about the navigational affordances of scenes; that is, information about where one can and cannot move within the immediate environment. We hypothesized that this affordance information could be extracted using a set of purely feedforward computations. To test this idea, we examined a deep CNN with a feedforward architecture that had been previously trained for scene classification. We found that responses in the CNN to scene images were highly predictive of fMRI responses in the OPA. Moreover the CNN accounted for the portion of OPA variance relating to the navigational affordances of scenes. The CNN could thus serve as an image-computable candidate model of affordance-related responses in the OPA. We then ran a series of in silico experiments on this model to gain insights into its internal operations. These analyses showed that the computation of affordance-related features relied heavily on visual information at high-spatial frequencies and cardinal orientations, both of which have previously been identified as low-level stimulus preferences of scene-selective visual cortex. These computations also exhibited a strong preference for information in the lower visual field, which is consistent with known retinotopic biases in the OPA. Visualizations of feature selectivity within the CNN suggested that affordance-based responses encoded features that define the layout of the spatial environment, such as boundary-defining junctions and large extended surfaces. Together, these results map the sensory functions of the OPA onto a fully quantitative model that provides insights into its visual computations. More broadly, they advance integrative techniques for understanding visual cortex across multiple level of analysis: from the identification of cortical sensory functions to the modeling of their underlying algorithms.Author summary: How does visual cortex compute behaviorally relevant properties of the local environment from sensory inputs? For decades, computational models have been able to explain only the earliest stages of biological vision, but recent advances in deep neural networks have yielded a breakthrough in the modeling of high-level visual cortex. However, these models are not explicitly designed for testing neurobiological theories, and, like the brain itself, their internal operations remain poorly understood. We examined a deep neural network for insights into the cortical representation of navigational affordances in visual scenes. In doing so, we developed a set of high-throughput techniques and statistical tools that are broadly useful for relating the internal operations of neural networks with the information processes of the brain. Our findings demonstrate that a deep neural network with purely feedforward computations can account for the processing of navigational layout in high-level visual cortex. We next performed a series of experiments and visualization analyses on this neural network. These analyses characterized a set of stimulus input features that may be critical for computing navigationally related cortical representations, and they identified a set of high-level, complex scene features that may serve as a basis set for the cortical coding of navigational layout. These findings suggest a computational mechanism through which high-level visual cortex might encode the spatial structure of the local navigational environment, and they demonstrate an experimental approach for leveraging the power of deep neural networks to understand the visual computations of the brain.

Suggested Citation

  • Michael F Bonner & Russell A Epstein, 2018. "Computational mechanisms underlying cortical responses to the affordance properties of visual scenes," PLOS Computational Biology, Public Library of Science, vol. 14(4), pages 1-31, April.
  • Handle: RePEc:plo:pcbi00:1006111
    DOI: 10.1371/journal.pcbi.1006111
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006111
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006111&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006111?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Garcia, Damien, 2010. "Robust smoothing of gridded data in one and higher dimensions with missing values," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 1167-1178, April.
    2. Goslee, Sarah C. & Urban, Dean L., 2007. "The ecodist Package for Dissimilarity-based Analysis of Ecological Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 22(i07).
    3. Hamed Nili & Cai Wingfield & Alexander Walther & Li Su & William Marslen-Wilson & Nikolaus Kriegeskorte, 2014. "A Toolbox for Representational Similarity Analysis," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-11, April.
    4. Russell Epstein & Nancy Kanwisher, 1998. "A cortical representation of the local visual environment," Nature, Nature, vol. 392(6676), pages 598-601, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haider Al-Tahan & Yalda Mohsenzadeh, 2021. "Reconstructing feedback representations in the ventral visual pathway with a generative adversarial autoencoder," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-19, March.
    2. Benjamin Lahner & Kshitij Dwivedi & Polina Iamshchinina & Monika Graumann & Alex Lascelles & Gemma Roig & Alessandro Thomas Gifford & Bowen Pan & SouYoung Jin & N. Apurva Ratan Murty & Kendrick Kay & , 2024. "Modeling short visual events through the BOLD moments video fMRI dataset and metadata," Nature Communications, Nature, vol. 15(1), pages 1-26, December.
    3. Valentina Krenz & Arjen Alink & Tobias Sommer & Benno Roozendaal & Lars Schwabe, 2023. "Time-dependent memory transformation in hippocampus and neocortex is semantic in nature," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Marisa Nordt & Jesse Gomez & Vaidehi S. Natu & Alex A. Rezai & Dawn Finzi & Holly Kular & Kalanit Grill-Spector, 2023. "Longitudinal development of category representations in ventral temporal cortex predicts word and face recognition," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Vasiliki Bougou & Michaël Vanhoyland & Alexander Bertrand & Wim Paesschen & Hans Op De Beeck & Peter Janssen & Tom Theys, 2024. "Neuronal tuning and population representations of shape and category in human visual cortex," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Ying Wang & Xue Zhang & Chunhui Wang & Weifen Huang & Qian Xu & Dong Liu & Wen Zhou & Shanguang Chen & Yi Jiang, 2022. "Modulation of biological motion perception in humans by gravity," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Joel Z Leibo & Qianli Liao & Fabio Anselmi & Tomaso Poggio, 2015. "The Invariance Hypothesis Implies Domain-Specific Regions in Visual Cortex," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-29, October.
    8. Isabella C. Wagner & Luise P. Graichen & Boryana Todorova & Andre Lüttig & David B. Omer & Matthias Stangl & Claus Lamm, 2023. "Entorhinal grid-like codes and time-locked network dynamics track others navigating through space," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    9. Klaus Ackermann & Simon D Angus & Paul A Raschky, 2017. "The Internet as Quantitative Social Science Platform: Insights from a Trillion Observations," Papers 1701.05632, arXiv.org.
    10. Satoko Amemori & Ann M. Graybiel & Ken-ichi Amemori, 2024. "Cingulate microstimulation induces negative decision-making via reduced top-down influence on primate fronto-cingulo-striatal network," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    11. Klaus Ackermann & Simon D Angus & Paul A Raschky, 2020. "Estimating Sleep and Work Hours from Alternative Data by Segmented Functional Classification Analysis, SFCA," SoDa Laboratories Working Paper Series 2020-04, Monash University, SoDa Laboratories.
    12. Julia Berezutskaya & Zachary V Freudenburg & Umut Güçlü & Marcel A J van Gerven & Nick F Ramsey, 2020. "Brain-optimized extraction of complex sound features that drive continuous auditory perception," PLOS Computational Biology, Public Library of Science, vol. 16(7), pages 1-34, July.
    13. Anna C. Peterson & Himanshu Sharma & Arvind Kumar & Bruno M. Ghersi & Scott J. Emrich & Kurt J. Vandegrift & Amit Kapoor & Michael J. Blum, 2021. "Rodent Virus Diversity and Differentiation across Post-Katrina New Orleans," Sustainability, MDPI, vol. 13(14), pages 1-18, July.
    14. Ishrat Z. Anka & Tamsyn M. Uren Webster & Waldir M. Berbel-Filho & Matthew Hitchings & Benjamin Overland & Sarah Weller & Carlos Garcia de Leaniz & Sofia Consuegra, 2024. "Microbiome and epigenetic variation in wild fish with low genetic diversity," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    15. Davide Rassati & Massimo Faccoli & Robert A Haack & Robert J Rabaglia & Edoardo Petrucco Toffolo & Andrea Battisti & Lorenzo Marini, 2016. "Bark and Ambrosia Beetles Show Different Invasion Patterns in the USA," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-17, July.
    16. Manoj Kumar & Cameron T Ellis & Qihong Lu & Hejia Zhang & Mihai Capotă & Theodore L Willke & Peter J Ramadge & Nicholas B Turk-Browne & Kenneth A Norman, 2020. "BrainIAK tutorials: User-friendly learning materials for advanced fMRI analysis," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-12, January.
    17. Hamed Nili & Alexander Walther & Arjen Alink & Nikolaus Kriegeskorte, 2020. "Inferring exemplar discriminability in brain representations," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-28, June.
    18. Chuanfa Chen & Yanyan Li & Na Zhao & Jinyun Guo & Guolin Liu, 2017. "A fast and robust interpolation filter for airborne lidar point clouds," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-20, May.
    19. Jinquan Ai & Chao Zhang & Lijuan Chen & Dajun Li, 2020. "Mapping Annual Land Use and Land Cover Changes in the Yangtze Estuary Region Using an Object-Based Classification Framework and Landsat Time Series Data," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
    20. R. Bhalla & Neil Pelkey & K. Devi Prasad, 2011. "Application of GIS for Evaluation and Design of Watershed Guidelines," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(1), pages 113-140, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.