IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48375-1.html
   My bibliography  Save this article

Cingulate microstimulation induces negative decision-making via reduced top-down influence on primate fronto-cingulo-striatal network

Author

Listed:
  • Satoko Amemori

    (Kyoto University
    Japan Society for the Promotion of Science)

  • Ann M. Graybiel

    (Massachusetts Institute of Technology)

  • Ken-ichi Amemori

    (Kyoto University)

Abstract

The dorsolateral prefrontal cortex (dlPFC) is crucial for regulation of emotion that is known to aid prevention of depression. The broader fronto-cingulo-striatal (FCS) network, including cognitive dlPFC and limbic cingulo-striatal regions, has been associated with a negative evaluation bias often seen in depression. The mechanism by which dlPFC regulates the limbic system remains largely unclear. Here we have successfully induced a negative bias in decision-making in female primates performing a conflict decision-making task, by directly microstimulating the subgenual cingulate cortex while simultaneously recording FCS local field potentials (LFPs). The artificially induced negative bias in decision-making was associated with a significant decrease in functional connectivity from cognitive to limbic FCS regions, represented by a reduction in Granger causality in beta-range LFPs from the dlPFC to the other regions. The loss of top-down directional influence from cognitive to limbic regions, we suggest, could underlie negative biases in decision-making as observed in depressive states.

Suggested Citation

  • Satoko Amemori & Ann M. Graybiel & Ken-ichi Amemori, 2024. "Cingulate microstimulation induces negative decision-making via reduced top-down influence on primate fronto-cingulo-striatal network," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48375-1
    DOI: 10.1038/s41467-024-48375-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48375-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48375-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hamed Nili & Cai Wingfield & Alexander Walther & Li Su & William Marslen-Wilson & Nikolaus Kriegeskorte, 2014. "A Toolbox for Representational Similarity Analysis," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-11, April.
    2. Laith Alexander & Christian M. Wood & Philip L. R. Gaskin & Stephen J. Sawiak & Tim D. Fryer & Young T. Hong & Lauren McIver & Hannah F. Clarke & Angela C. Roberts, 2020. "Over-activation of primate subgenual cingulate cortex enhances the cardiovascular, behavioral and neural responses to threat," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valentina Krenz & Arjen Alink & Tobias Sommer & Benno Roozendaal & Lars Schwabe, 2023. "Time-dependent memory transformation in hippocampus and neocortex is semantic in nature," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Julia Berezutskaya & Zachary V Freudenburg & Umut Güçlü & Marcel A J van Gerven & Nick F Ramsey, 2020. "Brain-optimized extraction of complex sound features that drive continuous auditory perception," PLOS Computational Biology, Public Library of Science, vol. 16(7), pages 1-34, July.
    3. Antonino Greco & Julia Moser & Hubert Preissl & Markus Siegel, 2024. "Predictive learning shapes the representational geometry of the human brain," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Manoj Kumar & Cameron T Ellis & Qihong Lu & Hejia Zhang & Mihai Capotă & Theodore L Willke & Peter J Ramadge & Nicholas B Turk-Browne & Kenneth A Norman, 2020. "BrainIAK tutorials: User-friendly learning materials for advanced fMRI analysis," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-12, January.
    5. Hamed Nili & Alexander Walther & Arjen Alink & Nikolaus Kriegeskorte, 2020. "Inferring exemplar discriminability in brain representations," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-28, June.
    6. Katherine R. Storrs & Barton L. Anderson & Roland W. Fleming, 2021. "Unsupervised learning predicts human perception and misperception of gloss," Nature Human Behaviour, Nature, vol. 5(10), pages 1402-1417, October.
    7. Agustin Lage-Castellanos & Giancarlo Valente & Elia Formisano & Federico De Martino, 2019. "Methods for computing the maximum performance of computational models of fMRI responses," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-25, March.
    8. Sreejan Kumar & Theodore R. Sumers & Takateru Yamakoshi & Ariel Goldstein & Uri Hasson & Kenneth A. Norman & Thomas L. Griffiths & Robert D. Hawkins & Samuel A. Nastase, 2024. "Shared functional specialization in transformer-based language models and the human brain," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    9. Ming Bo Cai & Nicolas W Schuck & Jonathan W Pillow & Yael Niv, 2019. "Representational structure or task structure? Bias in neural representational similarity analysis and a Bayesian method for reducing bias," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-30, May.
    10. Cai Wingfield & Li Su & Xunying Liu & Chao Zhang & Phil Woodland & Andrew Thwaites & Elisabeth Fonteneau & William D Marslen-Wilson, 2017. "Relating dynamic brain states to dynamic machine states: Human and machine solutions to the speech recognition problem," PLOS Computational Biology, Public Library of Science, vol. 13(9), pages 1-25, September.
    11. Michael F Bonner & Russell A Epstein, 2018. "Computational mechanisms underlying cortical responses to the affordance properties of visual scenes," PLOS Computational Biology, Public Library of Science, vol. 14(4), pages 1-31, April.
    12. Sebastian P. H. Speer & Laetitia Mwilambwe-Tshilobo & Lily Tsoi & Shannon M. Burns & Emily B. Falk & Diana I. Tamir, 2024. "Hyperscanning shows friends explore and strangers converge in conversation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Máté Aller & Agoston Mihalik & Uta Noppeney, 2022. "Audiovisual adaptation is expressed in spatial and decisional codes," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    14. Jörn Diedrichsen & Nikolaus Kriegeskorte, 2017. "Representational models: A common framework for understanding encoding, pattern-component, and representational-similarity analysis," PLOS Computational Biology, Public Library of Science, vol. 13(4), pages 1-33, April.
    15. Haider Al-Tahan & Yalda Mohsenzadeh, 2021. "Reconstructing feedback representations in the ventral visual pathway with a generative adversarial autoencoder," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-19, March.
    16. Benjamin Lahner & Kshitij Dwivedi & Polina Iamshchinina & Monika Graumann & Alex Lascelles & Gemma Roig & Alessandro Thomas Gifford & Bowen Pan & SouYoung Jin & N. Apurva Ratan Murty & Kendrick Kay & , 2024. "Modeling short visual events through the BOLD moments video fMRI dataset and metadata," Nature Communications, Nature, vol. 15(1), pages 1-26, December.
    17. Annika Garlichs & Helen Blank, 2024. "Prediction error processing and sharpening of expected information across the face-processing hierarchy," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    18. Kristjan Kalm & Dennis Norris, 2021. "Sequence learning recodes cortical representations instead of strengthening initial ones," PLOS Computational Biology, Public Library of Science, vol. 17(5), pages 1-34, May.
    19. Alexander J Barnett & Walter Reilly & Halle R Dimsdale-Zucker & Eda Mizrak & Zachariah Reagh & Charan Ranganath, 2021. "Intrinsic connectivity reveals functionally distinct cortico-hippocampal networks in the human brain," PLOS Biology, Public Library of Science, vol. 19(6), pages 1-34, June.
    20. Christianne Jacobs & Kirsten Petras & Pieter Moors & Valerie Goffaux, 2020. "Contrast versus identity encoding in the face image follow distinct orientation selectivity profiles," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-22, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48375-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.