IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v65y2009i2p521-529.html
   My bibliography  Save this article

On Assessing Surrogacy in a Single Trial Setting Using a Semicompeting Risks Paradigm

Author

Listed:
  • Debashis Ghosh

Abstract

No abstract is available for this item.

Suggested Citation

  • Debashis Ghosh, 2009. "On Assessing Surrogacy in a Single Trial Setting Using a Semicompeting Risks Paradigm," Biometrics, The International Biometric Society, vol. 65(2), pages 521-529, June.
  • Handle: RePEc:bla:biomet:v:65:y:2009:i:2:p:521-529
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2008.01109.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Constantine E. Frangakis & Donald B. Rubin, 2002. "Principal Stratification in Causal Inference," Biometrics, The International Biometric Society, vol. 58(1), pages 21-29, March.
    2. Debashis Ghosh, 2008. "Semiparametric Inference for Surrogate Endpoints with Bivariate Censored Data," Biometrics, The International Biometric Society, vol. 64(1), pages 149-156, March.
    3. Weijing Wang, 2003. "Estimating the association parameter for copula models under dependent censoring," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 257-273, February.
    4. Peng, Limin & Fine, Jason P., 2006. "Rank Estimation of Accelerated Lifetime Models With Dependent Censoring," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1085-1093, September.
    5. Junni L. Zhang & Donald B. Rubin, 2003. "Estimation of Causal Effects via Principal Stratification When Some Outcomes are Truncated by “Deathâ€," Journal of Educational and Behavioral Statistics, , vol. 28(4), pages 353-368, December.
    6. Zhezhen Jin, 2003. "Rank-based inference for the accelerated failure time model," Biometrika, Biometrika Trust, vol. 90(2), pages 341-353, June.
    7. Tomasz Burzykowski & Geert Molenberghs & Marc Buyse & Helena Geys & Didier Renard, 2001. "Validation of surrogate end points in multiple randomized clinical trials with failure time end points," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(4), pages 405-422.
    8. Yue Wang & Jeremy M. G. Taylor, 2002. "A Measure of the Proportion of Treatment Effect Explained by a Surrogate Marker," Biometrics, The International Biometric Society, vol. 58(4), pages 803-812, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Debashis Ghosh & Jeremy M. G. Taylor & Daniel J. Sargent, 2012. "Meta-analysis for Surrogacy: Accelerated Failure Time Models and Semicompeting Risks Modeling," Biometrics, The International Biometric Society, vol. 68(1), pages 226-232, March.
    2. John O'Quigley & Philippe Flandre, 2012. "Discussion by O'Quigley and Flandre," Biometrics, The International Biometric Society, vol. 68(1), pages 242-244, March.
    3. Layla Parast & Lu Tian & Tianxi Cai, 2020. "Assessing the value of a censored surrogate outcome," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 245-265, April.
    4. Debashis Ghosh, 2016. "A Modified Risk Set Approach to Biomarker Evaluation Studies," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(2), pages 395-406, October.
    5. Debashis Ghosh & Jeremy M. G. Taylor & Daniel J. Sargent, 2012. "Rejoinder for “Meta-analysis for Surrogacy: Accelerated Failure Time Models and Semicompeting Risks Modeling”," Biometrics, The International Biometric Society, vol. 68(1), pages 245-247, March.
    6. Ghosh, Debashis, 2012. "A causal framework for surrogate endpoints with semi-competing risks data," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1898-1902.
    7. Menggang Yu & Constantin T. Yiannoutsos, 2015. "Marginal and Conditional Distribution Estimation from Double-sampled Semi-competing Risks Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 87-103, March.
    8. Huazhen Lin & Ling Zhou & Chunhong Li & Yi Li, 2014. "Semiparametric transformation models for semicompeting survival data," Biometrics, The International Biometric Society, vol. 70(3), pages 599-607, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Layla Parast & Lu Tian & Tianxi Cai, 2020. "Assessing the value of a censored surrogate outcome," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 245-265, April.
    2. Debashis Ghosh, 2008. "Semiparametric Inference for Surrogate Endpoints with Bivariate Censored Data," Biometrics, The International Biometric Society, vol. 64(1), pages 149-156, March.
    3. Debashis Ghosh & Jeremy M. G. Taylor & Daniel J. Sargent, 2012. "Meta-analysis for Surrogacy: Accelerated Failure Time Models and Semicompeting Risks Modeling," Biometrics, The International Biometric Society, vol. 68(1), pages 226-232, March.
    4. A. Adam Ding & Guangkai Shi & Weijing Wang & Jin‐Jian Hsieh, 2009. "Marginal Regression Analysis for Semi‐Competing Risks Data Under Dependent Censoring," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(3), pages 481-500, September.
    5. Rui Zhuang & Ying Qing Chen, 2020. "Measuring Surrogacy in Clinical Research," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 295-323, December.
    6. A. Mattei & F. Mealli, 2007. "Application of the Principal Stratification Approach to the Faenza Randomized Experiment on Breast Self-Examination," Biometrics, The International Biometric Society, vol. 63(2), pages 437-446, June.
    7. Gilbert Peter B. & Blette Bryan S. & Hudgens Michael G. & Shepherd Bryan E., 2020. "Post-randomization Biomarker Effect Modification Analysis in an HIV Vaccine Clinical Trial," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 54-69, January.
    8. Dustin M. Long & Michael G. Hudgens, 2013. "Sharpening Bounds on Principal Effects with Covariates," Biometrics, The International Biometric Society, vol. 69(4), pages 812-819, December.
    9. Yannis Jemiai & Andrea Rotnitzky & Bryan E. Shepherd & Peter B. Gilbert, 2007. "Semiparametric estimation of treatment effects given base‐line covariates on an outcome measured after a post‐randomization event occurs," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 879-901, November.
    10. Menggang Yu & Bin Nan, 2010. "Regression Calibration in Semiparametric Accelerated Failure Time Models," Biometrics, The International Biometric Society, vol. 66(2), pages 405-414, June.
    11. Linbo Wang & Thomas S. Richardson & Xiao-Hua Zhou, 2017. "Causal analysis of ordinal treatments and binary outcomes under truncation by death," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 719-735, June.
    12. Ding, A. Adam, 2010. "Identifiability conditions for covariate effects model on survival times under informative censoring," Statistics & Probability Letters, Elsevier, vol. 80(11-12), pages 911-915, June.
    13. Wang, You-Gan & Fu, Liya, 2011. "Rank regression for accelerated failure time model with clustered and censored data," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2334-2343, July.
    14. Layla Parast & Tianxi Cai & Lu Tian, 2023. "Testing for heterogeneity in the utility of a surrogate marker," Biometrics, The International Biometric Society, vol. 79(2), pages 799-810, June.
    15. Bryan E. Shepherd & Peter B. Gilbert & Charles T. Dupont, 2011. "Sensitivity Analyses Comparing Time-to-Event Outcomes Only Existing in a Subset Selected Postrandomization and Relaxing Monotonicity," Biometrics, The International Biometric Society, vol. 67(3), pages 1100-1110, September.
    16. Fan Yang & Dylan S. Small, 2016. "Using post-outcome measurement information in censoring-by-death problems," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 299-318, January.
    17. Bryan E. Shepherd & Peter B. Gilbert & Yannis Jemiai & Andrea Rotnitzky, 2006. "Sensitivity Analyses Comparing Outcomes Only Existing in a Subset Selected Post-Randomization, Conditional on Covariates, with Application to HIV Vaccine Trials," Biometrics, The International Biometric Society, vol. 62(2), pages 332-342, June.
    18. Debashis Ghosh & Jeremy M. G. Taylor & Daniel J. Sargent, 2012. "Rejoinder for “Meta-analysis for Surrogacy: Accelerated Failure Time Models and Semicompeting Risks Modeling”," Biometrics, The International Biometric Society, vol. 68(1), pages 245-247, March.
    19. Constantine E. Frangakis & Donald B. Rubin & Ming-Wen An & Ellen MacKenzie, 2007. "Principal Stratification Designs to Estimate Input Data Missing Due to Death," Biometrics, The International Biometric Society, vol. 63(3), pages 641-649, September.
    20. Jeremy M. G. Taylor & Yue Wang & Rodolphe Thiébaut, 2005. "Counterfactual Links to the Proportion of Treatment Effect Explained by a Surrogate Marker," Biometrics, The International Biometric Society, vol. 61(4), pages 1102-1111, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:65:y:2009:i:2:p:521-529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.