IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0227857.html
   My bibliography  Save this article

Staging dementia based on caregiver reported patient symptoms: Implications from a latent class analysis

Author

Listed:
  • Qi Yuan
  • Tee Hng Tan
  • Peizhi Wang
  • Fiona Devi
  • Hui Lin Ong
  • Edimansyah Abdin
  • Magadi Harish
  • Richard Goveas
  • Li Ling Ng
  • Siow Ann Chong
  • Mythily Subramaniam

Abstract

Background: Tailoring interventions to the needs of caregivers is an important feature of successful caregiver support programs. To improve cost-effectiveness, group tailoring based on the stage of dementia could be a good alternative. However, existing staging strategies mostly depend on trained professionals. Objective: This study aims to stage dementia based on caregiver reported symptoms of persons with dementia. Methods: Latent class analysis was used. The classes derived were then mapped with disease duration to define the stages. Logistic regression with receiver operating characteristic curve was used to generate the optimal cut-offs. Results: Latent class analysis suggested a 4-class solution, these four classes were named as early (25.9%), mild (25.2%), moderate (16.7%) and severe stage (32.3%). The stages based on the cut-offs generated achieved an overall accuracy of 90.8% compared to stages derived from latent class analysis. Conclusion: The current study confirmed that caregiver reported patient symptoms could be used to classify persons with dementia into different stages. The new staging strategy is a good complement of existing dementia clinical assessment tools in terms of better supporting informal caregivers.

Suggested Citation

  • Qi Yuan & Tee Hng Tan & Peizhi Wang & Fiona Devi & Hui Lin Ong & Edimansyah Abdin & Magadi Harish & Richard Goveas & Li Ling Ng & Siow Ann Chong & Mythily Subramaniam, 2020. "Staging dementia based on caregiver reported patient symptoms: Implications from a latent class analysis," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-12, January.
  • Handle: RePEc:plo:pone00:0227857
    DOI: 10.1371/journal.pone.0227857
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0227857
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0227857&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0227857?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hamparsum Bozdogan, 1987. "Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 345-370, September.
    2. Hirotugu Akaike, 1987. "Factor analysis and AIC," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 317-332, September.
    3. Mo Zhou & Winter Maxwell Thayer & John F. P. Bridges, 2018. "Using Latent Class Analysis to Model Preference Heterogeneity in Health: A Systematic Review," PharmacoEconomics, Springer, vol. 36(2), pages 175-187, February.
    4. Truls Østbye & Rahul Malhotra & Chetna Malhotra & Chandima Arambepola & Angelique Chan, 2013. "Does Support From Foreign Domestic Workers Decrease the Negative Impact of Informal Caregiving? Results From Singapore Survey on Informal Caregiving," The Journals of Gerontology: Series B, The Gerontological Society of America, vol. 68(4), pages 609-621.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniela Andreini & Diego Rinallo & Giuseppe Pedeliento & Mara Bergamaschi, 2017. "Brands and Religion in the Secularized Marketplace and Workplace: Insights from the Case of an Italian Hospital Renamed After a Roman Catholic Pope," Journal of Business Ethics, Springer, vol. 141(3), pages 529-550, March.
    2. Byrd, T. A. & Marshall, T. E., 1997. "Relating information technology investment to organizational performance: a causal model analysis," Omega, Elsevier, vol. 25(1), pages 43-56, February.
    3. Golob, Thomas F. & Regan, A C, 2002. "Trucking Industry Preferences for Driver Traveler Information Using Wireless Internet-enabled Devices," University of California Transportation Center, Working Papers qt40q8h6sf, University of California Transportation Center.
    4. Naiara Escalante Mateos & Eider Goñi Palacios & Arantza Fernández-Zabala & Iratxe Antonio-Agirre, 2020. "Internal Structure, Reliability and Invariance across Gender Using the Multidimensional School Climate Scale PACE-33," IJERPH, MDPI, vol. 17(13), pages 1-24, July.
    5. Jung, Hyekyung & Schafer, Joseph L. & Seo, Byungtae, 2011. "A latent class selection model for nonignorably missing data," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 802-812, January.
    6. repec:jss:jstsof:06:i02 is not listed on IDEAS
    7. Lin Ting Hsiang, 2006. "A comparison of model selection indices for nested latent class models," Monte Carlo Methods and Applications, De Gruyter, vol. 12(3), pages 239-259, October.
    8. Wedel, Michel & Böckenholt, Ulf & Kamakura, Wagner A., 2003. "Factor models for multivariate count data," Journal of Multivariate Analysis, Elsevier, vol. 87(2), pages 356-369, November.
    9. Pendharkar, Parag C., 2006. "Scale economies and production function estimation for object-oriented software component and source code documentation size," European Journal of Operational Research, Elsevier, vol. 172(3), pages 1040-1050, August.
    10. Koufteros, Xenophon & Lu, Guanyi & Peters, Richard C. & Lai, Kee-hung & Wong, Christina W.Y. & Edwin Cheng, T.C., 2014. "Product development practices, manufacturing practices, and performance: A mediational perspective," International Journal of Production Economics, Elsevier, vol. 156(C), pages 83-97.
    11. Yang, Chih-Chien, 2006. "Evaluating latent class analysis models in qualitative phenotype identification," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 1090-1104, February.
    12. Ando, Tomohiro, 2009. "Bayesian factor analysis with fat-tailed factors and its exact marginal likelihood," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1717-1726, September.
    13. GONZALO, Jesus & PITARAKIS, Jean-Yves, 1994. "Comovements in Large Systems," LIDAM Discussion Papers CORE 1994065, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    14. Marc Blais & Ursula Hess & Andrea S. Riddle, 2002. "Static Versus Dynamic Structural Models of Depression: The Case of the CES-D," CIRANO Working Papers 2002s-37, CIRANO.
    15. Tuan, Luu Trong & Ngan, Vu Thanh, 2021. "Leading ethically to shape service-oriented organizational citizenship behavior among tourism salespersons: Dual mediation paths and moderating role of service role identity," Journal of Retailing and Consumer Services, Elsevier, vol. 60(C).
    16. Qi Chen & Wen Luo & Gregory J. Palardy & Ryan Glaman & Amber McEnturff, 2017. "The Efficacy of Common Fit Indices for Enumerating Classes in Growth Mixture Models When Nested Data Structure Is Ignored," SAGE Open, , vol. 7(1), pages 21582440177, March.
    17. Roy Levy & Gregory R. Hancock, 2011. "An Extended Model Comparison Framework for Covariance and Mean Structure Models, Accommodating Multiple Groups and Latent Mixtures," Sociological Methods & Research, , vol. 40(2), pages 256-278, May.
    18. Munzel, Andreas & Meyer-Waarden, Lars & Galan, Jean-Philippe, 2018. "The social side of sustainability: Well-being as a driver and an outcome of social relationships and interactions on social networking sites," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 14-27.
    19. Arantzazu Rodríguez-Fernández & Iker Izar-de-la-Fuente & Naiara Escalante & Lorea Azpiazu, 2021. "Perceived Social Support for a Sustainable Adolescence: A Theoretical Model of Its Sources and Types," Sustainability, MDPI, vol. 13(10), pages 1-13, May.
    20. Golob, Thomas F. & Regan, Amelia C., 2003. "Surveying and Modeling Trucking Industry Perceptions, Preferences and Behavior," University of California Transportation Center, Working Papers qt1gw166zk, University of California Transportation Center.
    21. Terry Elrod & Gerald Häubl & Steven Tipps, 2012. "Parsimonious Structural Equation Models for Repeated Measures Data, with Application to the Study of Consumer Preferences," Psychometrika, Springer;The Psychometric Society, vol. 77(2), pages 358-387, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0227857. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.