IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i1p802-812.html
   My bibliography  Save this article

A latent class selection model for nonignorably missing data

Author

Listed:
  • Jung, Hyekyung
  • Schafer, Joseph L.
  • Seo, Byungtae

Abstract

When we have data with missing values, the assumption that data are missing at random is very convenient. It is, however, sometimes questionable because some of the missing values could be strongly related to the underlying true values. We introduce methods for nonignorable multivariate missing data, which assume that missingness is related to the variables in question, and to the additional covariates, through a latent variable measured by the missingness indicators. The methodology developed here is useful for investigating the sensitivity of one's estimates to untestable assumptions about the missing-data mechanism. A simulation study and data analysis are conducted to evaluate the performance of the proposed method and to compare to that of MAR-based alternatives.

Suggested Citation

  • Jung, Hyekyung & Schafer, Joseph L. & Seo, Byungtae, 2011. "A latent class selection model for nonignorably missing data," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 802-812, January.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:1:p:802-812
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00274-4
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hamparsum Bozdogan, 1987. "Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 345-370, September.
    2. Hirotugu Akaike, 1987. "Factor analysis and AIC," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 317-332, September.
    3. Andrew Gelman & Iven Van Mechelen & Geert Verbeke & Daniel F. Heitjan & Michel Meulders, 2005. "Multiple Imputation for Model Checking: Completed-Data Plots with Missing and Latent Data," Biometrics, The International Biometric Society, vol. 61(1), pages 74-85, March.
    4. Jason Roy, 2003. "Modeling Longitudinal Data with Nonignorable Dropouts Using a Latent Dropout Class Model," Biometrics, The International Biometric Society, vol. 59(4), pages 829-836, December.
    5. Barnard J. & Frangakis C.E. & Hill J.L. & Rubin D.B., 2003. "Principal Stratification Approach to Broken Randomized Experiments: A Case Study of School Choice Vouchers in New York City," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 299-323, January.
    6. Haiqun Lin & Charles E. McCulloch & Robert A. Rosenheck, 2004. "Latent Pattern Mixture Models for Informative Intermittent Missing Data in Longitudinal Studies," Biometrics, The International Biometric Society, vol. 60(2), pages 295-305, June.
    7. Hwan Chung & Brian P. Flaherty & Joseph L. Schafer, 2006. "Latent class logistic regression: application to marijuana use and attitudes among high school seniors," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(4), pages 723-743, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jouni Kuha & Myrsini Katsikatsou & Irini Moustaki, 2018. "Latent variable modelling with non‐ignorable item non‐response: multigroup response propensity models for cross‐national analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 1169-1192, October.
    2. Robitzsch, Alexander, 2020. "About Still Nonignorable Consequences of (Partially) Ignoring Missing Item Responses in Large-scale Assessment," OSF Preprints hmy45, Center for Open Science.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniela Andreini & Diego Rinallo & Giuseppe Pedeliento & Mara Bergamaschi, 2017. "Brands and Religion in the Secularized Marketplace and Workplace: Insights from the Case of an Italian Hospital Renamed After a Roman Catholic Pope," Journal of Business Ethics, Springer, vol. 141(3), pages 529-550, March.
    2. Byrd, T. A. & Marshall, T. E., 1997. "Relating information technology investment to organizational performance: a causal model analysis," Omega, Elsevier, vol. 25(1), pages 43-56, February.
    3. Golob, Thomas F. & Regan, A C, 2002. "Trucking Industry Preferences for Driver Traveler Information Using Wireless Internet-enabled Devices," University of California Transportation Center, Working Papers qt40q8h6sf, University of California Transportation Center.
    4. Naiara Escalante Mateos & Eider Goñi Palacios & Arantza Fernández-Zabala & Iratxe Antonio-Agirre, 2020. "Internal Structure, Reliability and Invariance across Gender Using the Multidimensional School Climate Scale PACE-33," IJERPH, MDPI, vol. 17(13), pages 1-24, July.
    5. Jason Roy & Michael J. Daniels, 2008. "A General Class of Pattern Mixture Models for Nonignorable Dropout with Many Possible Dropout Times," Biometrics, The International Biometric Society, vol. 64(2), pages 538-545, June.
    6. Jouni Kuha & Myrsini Katsikatsou & Irini Moustaki, 2018. "Latent variable modelling with non‐ignorable item non‐response: multigroup response propensity models for cross‐national analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 1169-1192, October.
    7. repec:jss:jstsof:06:i02 is not listed on IDEAS
    8. Lin Ting Hsiang, 2006. "A comparison of model selection indices for nested latent class models," Monte Carlo Methods and Applications, De Gruyter, vol. 12(3), pages 239-259, October.
    9. Wedel, Michel & Böckenholt, Ulf & Kamakura, Wagner A., 2003. "Factor models for multivariate count data," Journal of Multivariate Analysis, Elsevier, vol. 87(2), pages 356-369, November.
    10. Pendharkar, Parag C., 2006. "Scale economies and production function estimation for object-oriented software component and source code documentation size," European Journal of Operational Research, Elsevier, vol. 172(3), pages 1040-1050, August.
    11. Koufteros, Xenophon & Lu, Guanyi & Peters, Richard C. & Lai, Kee-hung & Wong, Christina W.Y. & Edwin Cheng, T.C., 2014. "Product development practices, manufacturing practices, and performance: A mediational perspective," International Journal of Production Economics, Elsevier, vol. 156(C), pages 83-97.
    12. Yang, Chih-Chien, 2006. "Evaluating latent class analysis models in qualitative phenotype identification," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 1090-1104, February.
    13. Ando, Tomohiro, 2009. "Bayesian factor analysis with fat-tailed factors and its exact marginal likelihood," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1717-1726, September.
    14. GONZALO, Jesus & PITARAKIS, Jean-Yves, 1994. "Comovements in Large Systems," LIDAM Discussion Papers CORE 1994065, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    15. Qi Yuan & Tee Hng Tan & Peizhi Wang & Fiona Devi & Hui Lin Ong & Edimansyah Abdin & Magadi Harish & Richard Goveas & Li Ling Ng & Siow Ann Chong & Mythily Subramaniam, 2020. "Staging dementia based on caregiver reported patient symptoms: Implications from a latent class analysis," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-12, January.
    16. Marc Blais & Ursula Hess & Andrea S. Riddle, 2002. "Static Versus Dynamic Structural Models of Depression: The Case of the CES-D," CIRANO Working Papers 2002s-37, CIRANO.
    17. Tuan, Luu Trong & Ngan, Vu Thanh, 2021. "Leading ethically to shape service-oriented organizational citizenship behavior among tourism salespersons: Dual mediation paths and moderating role of service role identity," Journal of Retailing and Consumer Services, Elsevier, vol. 60(C).
    18. Qi Chen & Wen Luo & Gregory J. Palardy & Ryan Glaman & Amber McEnturff, 2017. "The Efficacy of Common Fit Indices for Enumerating Classes in Growth Mixture Models When Nested Data Structure Is Ignored," SAGE Open, , vol. 7(1), pages 21582440177, March.
    19. Lee, Jung Wun & Chung, Hwan & Jeon, Saebom, 2021. "Bayesian multivariate latent class profile analysis: Exploring the developmental progression of youth depression and substance use," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    20. Roy Levy & Gregory R. Hancock, 2011. "An Extended Model Comparison Framework for Covariance and Mean Structure Models, Accommodating Multiple Groups and Latent Mixtures," Sociological Methods & Research, , vol. 40(2), pages 256-278, May.
    21. Dantan Etienne & Proust-Lima Cécile & Letenneur Luc & Jacqmin-Gadda Helene, 2008. "Pattern Mixture Models and Latent Class Models for the Analysis of Multivariate Longitudinal Data with Informative Dropouts," The International Journal of Biostatistics, De Gruyter, vol. 4(1), pages 1-28, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:1:p:802-812. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.