IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0225447.html
   My bibliography  Save this article

The coevolution of contagion and behavior with increasing and decreasing awareness

Author

Listed:
  • Samira Maghool
  • Nahid Maleki-Jirsaraei
  • Marco Cremonini

Abstract

Understanding the effects of individual awareness on epidemic phenomena is important to comprehend the coevolving system dynamic, to improve forecasting, and to better evaluate the outcome of possible interventions. In previous models of epidemics on social networks, individual awareness has often been approximated as a generic personal trait that depends on social reinforcement, and used to introduce variability in state transition probabilities. A novelty of this work is to assume that individual awareness is a function of several contributing factors pooled together, different by nature and dynamics, and to study it for different epidemic categories. This way, our model still has awareness as the core attribute that may change state transition probabilities. Another contribution is to study positive and negative variations of awareness, in a contagion-behavior model. Imitation is the key mechanism that we model for manipulating awareness, under different network settings and assumptions, in particular regarding the degree of intentionality that individuals may exhibit in spreading an epidemic. Three epidemic categories are considered—disease, addiction, and rumor—to discuss different imitation mechanisms and degree of intentionality. We assume a population with a heterogeneous distribution of awareness and different response mechanisms to information gathered from the network. With simulations, we show the interplay between population and awareness factors producing a distribution of state transition probabilities and analyze how different network and epidemic configurations modify transmission patterns.

Suggested Citation

  • Samira Maghool & Nahid Maleki-Jirsaraei & Marco Cremonini, 2019. "The coevolution of contagion and behavior with increasing and decreasing awareness," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-22, December.
  • Handle: RePEc:plo:pone00:0225447
    DOI: 10.1371/journal.pone.0225447
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0225447
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0225447&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0225447?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Flávio Codeço Coelho & Claudia T Codeço, 2009. "Dynamic Modeling of Vaccinating Behavior as a Function of Individual Beliefs," PLOS Computational Biology, Public Library of Science, vol. 5(7), pages 1-10, July.
    2. Iacopo Iacopini & Giovanni Petri & Alain Barrat & Vito Latora, 2019. "Simplicial models of social contagion," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    3. Duncan J. Watts & Peter Sheridan Dodds, 2007. "Influentials, Networks, and Public Opinion Formation," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 34(4), pages 441-458, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nie, Yanyi & Zhong, Xiaoni & Lin, Tao & Wang, Wei, 2022. "Homophily in competing behavior spreading among the heterogeneous population with higher-order interactions," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    2. Fang, Fanshu & Ma, Jing & Ma, Yin-Jie & Boccaletti, Stefano, 2024. "Social contagion on higher-order networks: The effect of relationship strengths," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    3. Zhang, Renquan & Wei, Ting & Sun, Yifan & Pei, Sen, 2024. "Influence maximization based on simplicial contagion models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 645(C).
    4. Zhao, Dandan & Li, Runchao & Peng, Hao & Zhong, Ming & Wang, Wei, 2022. "Higher-order percolation in simplicial complexes," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    5. Huan Wang & Chuang Ma & Han-Shuang Chen & Ying-Cheng Lai & Hai-Feng Zhang, 2022. "Full reconstruction of simplicial complexes from binary contagion and Ising data," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Silvio Vismara, 2018. "Information Cascades among Investors in Equity Crowdfunding," Entrepreneurship Theory and Practice, , vol. 42(3), pages 467-497, May.
    7. Inyoung Chae & Andrew T. Stephen & Yakov Bart & Dai Yao, 2017. "Spillover Effects in Seeded Word-of-Mouth Marketing Campaigns," Marketing Science, INFORMS, vol. 36(1), pages 89-104, January.
    8. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    9. Vincent Labatut & Jean-Michel Balasque, 2010. "Business-oriented Analysis of a Social Network of University Students," Post-Print hal-00633643, HAL.
    10. Antoine Loeper & Jakub Steiner & Colin Stewart, 2014. "Influential Opinion Leaders," Economic Journal, Royal Economic Society, vol. 124(581), pages 1147-1167, December.
    11. Kreindler, Gabriel E. & Young, H. Peyton, 2013. "Fast convergence in evolutionary equilibrium selection," Games and Economic Behavior, Elsevier, vol. 80(C), pages 39-67.
    12. Juan Shi & Kin Keung Lai & Ping Hu & Gang Chen, 2018. "Factors dominating individual information disseminating behavior on social networking sites," Information Technology and Management, Springer, vol. 19(2), pages 121-139, June.
    13. Natalia Levina & Manuel Arriaga, 2014. "Distinction and Status Production on User-Generated Content Platforms: Using Bourdieu’s Theory of Cultural Production to Understand Social Dynamics in Online Fields," Information Systems Research, INFORMS, vol. 25(3), pages 468-488, September.
    14. Michael Foley & Rory Smead & Patrick Forber & Christoph Riedl, 2021. "Avoiding the bullies: The resilience of cooperation among unequals," PLOS Computational Biology, Public Library of Science, vol. 17(4), pages 1-18, April.
    15. Trischler, Jakob & Johnson, Mikael & Kristensson, Per, 2020. "A service ecosystem perspective on the diffusion of sustainability-oriented user innovations," Journal of Business Research, Elsevier, vol. 116(C), pages 552-560.
    16. Luca Gallo & Lucas Lacasa & Vito Latora & Federico Battiston, 2024. "Higher-order correlations reveal complex memory in temporal hypergraphs," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    17. Xuzhen Zhu & Jinming Ma & Xin Su & Hui Tian & Wei Wang & Shimin Cai, 2019. "Information Spreading on Weighted Multiplex Social Network," Complexity, Hindawi, vol. 2019, pages 1-15, November.
    18. Gong, Chang & Li, Jichao & Qian, Liwei & Li, Siwei & Yang, Zhiwei & Yang, Kewei, 2024. "HMSL: Source localization based on higher-order Markov propagation," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    19. Daniel Reisinger & Fabian Tschofenig & Raven Adam & Marie Lisa Kogler & Manfred Füllsack & Fabian Veider & Georg Jäger, 2024. "Patterns of stability in complex contagions," Journal of Computational Social Science, Springer, vol. 7(2), pages 1895-1911, October.
    20. Audrey Yue & Elmie Nekmat & Annisa R. Beta, 2019. "Digital Literacy Through Digital Citizenship: Online Civic Participation and Public Opinion Evaluation of Youth Minorities in Southeast Asia," Media and Communication, Cogitatio Press, vol. 7(2), pages 100-114.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0225447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.