IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0224667.html
   My bibliography  Save this article

Population preferences for breast cancer screening policies: Discrete choice experiment in Belarus

Author

Listed:
  • Olena Mandrik
  • Alesya Yaumenenka
  • Rolando Herrero
  • Marcel F Jonker

Abstract

Background: Reaching an acceptable participation rate in screening programs is challenging. With the objective of supporting the Belarus government to implement mammography screening as a single intervention, we analyse the main determinants of breast cancer screening participation. Methods: We developed a discrete choice experiment using a mixed research approach, comprising a literature review, in-depth interviews with key informants (n = 23), “think aloud” pilots (n = 10) and quantitative measurement of stated preferences for a representative sample of Belarus women (n = 428, 89% response rate). The choice data were analysed using a latent class logit model with four classes selected based on statistical (consistent Akaike information criterion) and interpretational considerations. Results: Women in the sample were representative of all six geographic regions, mainly urban (81%), and high-education (31%) characteristics. Preferences of women in all four classes were primarily influenced by the perceived reliability of the test (sensitivity and screening method) and costs. Travel and waiting time were important components in the decision for 34% of women. Most women in Belarus preferred mammography screening to the existing clinical breast examination (90%). However, if the national screening program is restricted in capacity, this proportion of women will drop to 55%. Women in all four classes preferred combined screening (mammography with clinical breast examination) to single mammography. While this preference was stronger if lower test sensitivity was assumed, 28% of women consistently gave more importance to combined screening than to test sensitivity. Conclusion: Women in Belarus were favourable to mammography screening. Population should be informed that there are no benefits of combined screening compared to single mammography. The results of this study are directly relevant to policy makers and help them targeting the screening population.

Suggested Citation

  • Olena Mandrik & Alesya Yaumenenka & Rolando Herrero & Marcel F Jonker, 2019. "Population preferences for breast cancer screening policies: Discrete choice experiment in Belarus," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-17, November.
  • Handle: RePEc:plo:pone00:0224667
    DOI: 10.1371/journal.pone.0224667
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0224667
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0224667&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0224667?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hanemann, W Michael, 1984. "Discrete-Continuous Models of Consumer Demand," Econometrica, Econometric Society, vol. 52(3), pages 541-561, May.
    2. Daniele Pacifico & Hong il Yoo, 2013. "lclogit: A Stata command for fitting latent-class conditional logit models via the expectation-maximization algorithm," Stata Journal, StataCorp LP, vol. 13(3), pages 625-639, September.
    3. Marcel F. Jonker & Bas Donkers & Esther de Bekker‐Grob & Elly A. Stolk, 2019. "Attribute level overlap (and color coding) can reduce task complexity, improve choice consistency, and decrease the dropout rate in discrete choice experiments," Health Economics, John Wiley & Sons, Ltd., vol. 28(3), pages 350-363, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Runa Nesbakken, 1998. "Residential Energy Consumption for Space Heating in Norwegian Households A Discrete-Continuous Choice Approach," Discussion Papers 231, Statistics Norway, Research Department.
    2. Shr, Yau-Huo (Jimmy) & Zhang, Wendong, 2024. "Omitted downstream attributes and the benefits of nutrient reductions: Implications for choice experiments," Ecological Economics, Elsevier, vol. 222(C).
    3. Hyowon Kim & Dong Soo Kim & Greg M. Allenby, 2020. "Benefit Formation and Enhancement," Quantitative Marketing and Economics (QME), Springer, vol. 18(4), pages 419-468, December.
    4. David R. Bell & Jeongwen Chiang & V. Padmanabhan, 1999. "The Decomposition of Promotional Response: An Empirical Generalization," Marketing Science, INFORMS, vol. 18(4), pages 504-526.
    5. T.R.L. Fry & R.D. Brooks & Br. Comley & J. Zhang, 1993. "Economic Motivations for Limited Dependent and Qualitative Variable Models," The Economic Record, The Economic Society of Australia, vol. 69(2), pages 193-205, June.
    6. Bowker, James Michael & Starbuck, C. Meghan & English, Donald B.K. & Bergstrom, John C. & Rosenberger, Randall S. & McCollum, Daniel W., 2009. "Estimating the Net Economic Value of National Forest Recreation: An Application of the National Visitor Use Monitoring Database," Faculty Series 59603, University of Georgia, Department of Agricultural and Applied Economics.
    7. Olmstead, Sheila M. & Michael Hanemann, W. & Stavins, Robert N., 2007. "Water demand under alternative price structures," Journal of Environmental Economics and Management, Elsevier, vol. 54(2), pages 181-198, September.
    8. Paul Ellickson & Sanjog Misra, 2012. "Enriching interactions: Incorporating outcome data into static discrete games," Quantitative Marketing and Economics (QME), Springer, vol. 10(1), pages 1-26, March.
    9. Don Fullerton & Li Gan & Miwa Hattori, 2015. "A model to evaluate vehicle emission incentive policies in Japan," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 17(1), pages 79-108, January.
    10. Torres, Marcelo de O. & Felthoven, Ronald G., 2014. "Productivity growth and product choice in catch share fisheries: The case of Alaska pollock," Marine Policy, Elsevier, vol. 50(PA), pages 280-289.
    11. Marco Costanigro & Yuko Onozaka, 2020. "A Belief‐Preference Model of Choice for Experience and Credence Goods," Journal of Agricultural Economics, Wiley Blackwell, vol. 71(1), pages 70-95, February.
    12. de Ayala, Amaia & Hoyos, David & Mariel, Petr, 2015. "Suitability of discrete choice experiments for landscape management under the European Landscape Convention," Journal of Forest Economics, Elsevier, vol. 21(2), pages 79-96.
    13. Nicholas Economides & Katja Seim & V. Brian Viard, 2008. "Quantifying the benefits of entry into local phone service," RAND Journal of Economics, RAND Corporation, vol. 39(3), pages 699-730, September.
    14. Katja Seim & Michael Sinkinson, 2016. "Mixed pricing in online marketplaces," Quantitative Marketing and Economics (QME), Springer, vol. 14(2), pages 129-155, June.
    15. Igal Hendel, 1994. "Estimating Multiple-Discrete Choice Models: An Application to Computeri-zzation Returns," NBER Technical Working Papers 0168, National Bureau of Economic Research, Inc.
    16. Akoko, Peter Obuon & Gathungu, Edith & De Groote, Hugo, 2024. "Evaluating Smallholder Farmers’ Willingness to Pay for Improved Maize Dryers in Njoro Sub-County, Nakuru, Kenya," IAAE 2024 Conference, August 2-7, 2024, New Delhi, India 344279, International Association of Agricultural Economists (IAAE).
    17. Dang, Hai-Anh, 2007. "The determinants and impact of private tutoring classes in Vietnam," Economics of Education Review, Elsevier, vol. 26(6), pages 683-698, December.
    18. Irz, Xavier & Mazzocchi, Mario & Réquillart, Vincent & Soler, Louis-Georges, 2015. "Research in Food Economics: past trends and new challenges," Revue d'Etudes en Agriculture et Environnement, Editions NecPlus, vol. 96(01), pages 187-237, March.
    19. Bhat, Chandra R., 2005. "A multiple discrete-continuous extreme value model: formulation and application to discretionary time-use decisions," Transportation Research Part B: Methodological, Elsevier, vol. 39(8), pages 679-707, September.
    20. Chen, Gang & Ratcliffe, Julie & Milte, Rachel & Khadka, Jyoti & Kaambwa, Billingsley, 2021. "Quality of care experience in aged care: An Australia-Wide discrete choice experiment to elicit preference weights," Social Science & Medicine, Elsevier, vol. 289(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0224667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.