IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0224522.html
   My bibliography  Save this article

Modeling of inter-organizational coordination dynamics in resilience planning of infrastructure systems: A multilayer network simulation framework

Author

Listed:
  • Qingchun Li
  • Shangjia Dong
  • Ali Mostafavi

Abstract

This paper proposes and tests a multilayer framework for simulating the network dynamics of inter-organizational coordination among interdependent infrastructure systems (IISs) in resilience planning. Inter-organizational coordination among IISs (such as transportation, flood control, and emergency management) would greatly affect the effectiveness of resilience planning. Hence, it is important to examine and understand the dynamics of coordination in networks of organizations within and across various systems in resilience planning. To capture the dynamic nature of coordination frequency and the heterogeneity of organizations, this paper proposes a multilayer network simulation framework enabling the characterization of inter-organizational coordination dynamics within and across IISs. In the proposed framework, coordination probabilities are utilized to approximate the varying levels of collaboration among organizations. Based on these derived collaborations, the simulation process perturbs intra-layer or inter-layer links and unveils the level of inter-organizational coordination within and across IISs. To test the proposed framework, the study examined a multilayer collaboration network of 35 organizations from five infrastructure systems within Harris County, Texas, based on the data gathered from a survey in the aftermath of Hurricane Harvey. The results indicate that prior to Hurricane Harvey: (1) coordination among organizations across different infrastructure systems is less than the coordination within the individual systems; (2) organizations from the community development system had a low level of coordination for hazard mitigation with organizations in flood control and transportation systems; (3) achieving a greater level of coordination among organizations across infrastructure systems is more difficult and would require a greater frequency of interaction (compared to within-system coordination). The results show the capability of the proposed multilayer network simulation framework to examine inter-organizational coordination dynamics at the system level (e.g., within and across IISs). The assessment of inter-organizational coordination within and across IISs sheds light on important organizational interdependencies in IISs and leads to recommendations for improving the resilience planning process.

Suggested Citation

  • Qingchun Li & Shangjia Dong & Ali Mostafavi, 2019. "Modeling of inter-organizational coordination dynamics in resilience planning of infrastructure systems: A multilayer network simulation framework," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-21, November.
  • Handle: RePEc:plo:pone00:0224522
    DOI: 10.1371/journal.pone.0224522
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0224522
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0224522&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0224522?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shade T Shutters & Rachata Muneepeerakul & José Lobo, 2015. "Quantifying urban economic resilience through labour force interdependence," Palgrave Communications, Palgrave Macmillan, vol. 1(palcomms2), pages 15010-15010, May.
    2. Sarah LaRocca & Jonas Johansson & Henrik Hassel & Seth Guikema, 2015. "Topological Performance Measures as Surrogates for Physical Flow Models for Risk and Vulnerability Analysis for Electric Power Systems," Risk Analysis, John Wiley & Sons, vol. 35(4), pages 608-623, April.
    3. R. Kinney & P. Crucitti & R. Albert & V. Latora, 2005. "Modeling cascading failures in the North American power grid," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 46(1), pages 101-107, July.
    4. Philip R. Berke & Matthew L. Malecha & Siyu Yu & Jaekyung Lee & Jaimie H. Masterson, 2019. "Plan integration for resilience scorecard: evaluating networks of plans in six US coastal cities," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 62(5), pages 901-920, April.
    5. Crucitti, Paolo & Latora, Vito & Marchiori, Massimo, 2004. "A topological analysis of the Italian electric power grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(1), pages 92-97.
    6. Philip Berke & Galen Newman & Jaekyung Lee & Tabitha Combs & Carl Kolosna & David Salvesen, 2015. "Evaluation of Networks of Plans and Vulnerability to Hazards and Climate Change: A Resilience Scorecard," Journal of the American Planning Association, Taylor & Francis Journals, vol. 81(4), pages 287-302, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tianhua Li & Yanchao Du & Yongbo Yuan, 2019. "Use of Variable Fuzzy Clustering to Quantify the Vulnerability of a Power Grid to Earthquake Damage," Sustainability, MDPI, vol. 11(20), pages 1-17, October.
    2. Aparna Kumari & Tim G. Frazier, 2021. "Evaluating social capital in emergency and disaster management and hazards plans," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 949-973, October.
    3. Wilko Heitkoetter & Wided Medjroubi & Thomas Vogt & Carsten Agert, 2019. "Comparison of Open Source Power Grid Models—Combining a Mathematical, Visual and Electrical Analysis in an Open Source Tool," Energies, MDPI, vol. 12(24), pages 1-15, December.
    4. Bacău, Simona & Grădinaru, Simona R. & Hersperger, Anna M., 2020. "Spatial plans as relational data: Using social network analysis to assess consistency among Bucharest’s planning instruments," Land Use Policy, Elsevier, vol. 92(C).
    5. Ouyang, Min & Zhao, Lijing & Hong, Liu & Pan, Zhezhe, 2014. "Comparisons of complex network based models and real train flow model to analyze Chinese railway vulnerability," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 38-46.
    6. Guo, Hengdao & Zheng, Ciyan & Iu, Herbert Ho-Ching & Fernando, Tyrone, 2017. "A critical review of cascading failure analysis and modeling of power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 9-22.
    7. H Jönsson & J Johansson & H Johansson, 2008. "Identifying critical components in technical infrastructure networks," Journal of Risk and Reliability, , vol. 222(2), pages 235-243, June.
    8. Ouyang, Min & Pan, Zhezhe & Hong, Liu & Zhao, Lijing, 2014. "Correlation analysis of different vulnerability metrics on power grids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 396(C), pages 204-211.
    9. Qingchun Li & Bryce Hannibal & Ali Mostafavi & Philip Berke & Sierra Woodruff & Arnold Vedlitz, 2020. "Examining of the actor collaboration networks around hazard mitigation: a hurricane harvey study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3541-3562, September.
    10. Ma, Tian-Lin & Yao, Jian-Xi & Qi, Cheng & Zhu, Hong-Lu & Sun, Yu-Shu, 2013. "Non-monotonic increase of robustness with capacity tolerance in power grids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5516-5524.
    11. Ettore Bompard & Lingen Luo & Enrico Pons, 2015. "A perspective overview of topological approaches for vulnerability analysis of power transmission grids," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 11(1), pages 15-26.
    12. Ferrario, E. & Poulos, A. & Castro, S. & de la Llera, J.C. & Lorca, A., 2022. "Predictive capacity of topological measures in evaluating seismic risk and resilience of electric power networks," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    13. Ma, Xiangyu & Zhou, Huijie & Li, Zhiyi, 2021. "On the resilience of modern power systems: A complex network perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    14. Winkler, James & Dueñas-Osorio, Leonardo & Stein, Robert & Subramanian, Devika, 2010. "Performance assessment of topologically diverse power systems subjected to hurricane events," Reliability Engineering and System Safety, Elsevier, vol. 95(4), pages 323-336.
    15. Guo, Wenzhang & Wang, Hao & Wu, Zhengping, 2018. "Robustness analysis of complex networks with power decentralization strategy via flow-sensitive centrality against cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 186-199.
    16. Lucas Cuadra & Sancho Salcedo-Sanz & Javier Del Ser & Silvia Jiménez-Fernández & Zong Woo Geem, 2015. "A Critical Review of Robustness in Power Grids Using Complex Networks Concepts," Energies, MDPI, vol. 8(9), pages 1-55, August.
    17. Christine Quattro & Thomas Daniels, 2022. "The Constellation of Plans: Toward a New Structure of Comprehensive Plans in US Cities," Land, MDPI, vol. 11(10), pages 1-16, October.
    18. Koç, Yakup & Warnier, Martijn & Van Mieghem, Piet & Kooij, Robert E. & Brazier, Frances M.T., 2014. "A topological investigation of phase transitions of cascading failures in power grids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 273-284.
    19. Vaibhav Gaur & Om Prakash Yadav & Gunjan Soni & Ajay Pal Singh Rathore, 2021. "A literature review on network reliability analysis and its engineering applications," Journal of Risk and Reliability, , vol. 235(2), pages 167-181, April.
    20. Ouyang, Min & Dueñas-Osorio, Leonardo, 2011. "An approach to design interface topologies across interdependent urban infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1462-1473.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0224522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.