IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0222939.html
   My bibliography  Save this article

Voxelwise statistical methods to localize practice variation in brain tumor surgery

Author

Listed:
  • Roelant Eijgelaar
  • Philip C De Witt Hamer
  • Carel F W Peeters
  • Frederik Barkhof
  • Marcel van Herk
  • Marnix G Witte

Abstract

Purpose: During resections of brain tumors, neurosurgeons have to weigh the risk between residual tumor and damage to brain functions. Different perspectives on these risks result in practice variation. We present statistical methods to localize differences in extent of resection between institutions which should enable to reveal brain regions affected by such practice variation. Methods: Synthetic data were generated by simulating spheres for brain, tumors, resection cavities, and an effect region in which a likelihood of surgical avoidance could be varied between institutions. Three statistical methods were investigated: a non-parametric permutation based approach, Fisher’s exact test, and a full Bayesian Markov chain Monte Carlo (MCMC) model. For all three methods the false discovery rate (FDR) was determined as a function of the cut-off value for the q-value or the highest density interval, and receiver operating characteristic and precision recall curves were created. Sensitivity to variations in the parameters of the synthetic model were investigated. Finally, all these methods were applied to retrospectively collected data of 77 brain tumor resections in two academic hospitals. Results: Fisher’s method provided an accurate estimation of observed FDR in the synthetic data, whereas the permutation approach was too liberal and underestimated FDR. AUC values were similar for Fisher and Bayes methods, and superior to the permutation approach. Fisher’s method deteriorated and became too liberal for reduced tumor size, a smaller size of the effect region, a lower overall extent of resection, fewer patients per cohort, and a smaller discrepancy in surgical avoidance probabilities between the different surgical practices. In the retrospective patient data, all three methods identified a similar effect region, with lower estimated FDR in Fisher’s method than using the permutation method. Conclusions: Differences in surgical practice may be detected using voxel statistics. Fisher’s test provides a fast method to localize differences but could underestimate true FDR. Bayesian MCMC is more flexible and easily extendable, and leads to similar results, but at increased computational cost.

Suggested Citation

  • Roelant Eijgelaar & Philip C De Witt Hamer & Carel F W Peeters & Frederik Barkhof & Marcel van Herk & Marnix G Witte, 2019. "Voxelwise statistical methods to localize practice variation in brain tumor surgery," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-12, September.
  • Handle: RePEc:plo:pone00:0222939
    DOI: 10.1371/journal.pone.0222939
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0222939
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0222939&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0222939?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carpenter, Bob & Gelman, Andrew & Hoffman, Matthew D. & Lee, Daniel & Goodrich, Ben & Betancourt, Michael & Brubaker, Marcus & Guo, Jiqiang & Li, Peter & Riddell, Allen, 2017. "Stan: A Probabilistic Programming Language," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i01).
    2. Peter B. Gilbert, 2005. "A modified false discovery rate multiple‐comparisons procedure for discrete data, applied to human immunodeficiency virus genetics," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(1), pages 143-158, January.
    3. Benjamini, Yoav & Heller, Ruth, 2007. "False Discovery Rates for Spatial Signals," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1272-1281, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francis,David C. & Kubinec ,Robert, 2022. "Beyond Political Connections : A Measurement Model Approach to Estimating Firm-levelPolitical Influence in 41 Economies," Policy Research Working Paper Series 10119, The World Bank.
    2. Martinovici, A., 2019. "Revealing attention - how eye movements predict brand choice and moment of choice," Other publications TiSEM 7dca38a5-9f78-4aee-bd81-c, Tilburg University, School of Economics and Management.
    3. Yongping Bao & Ludwig Danwitz & Fabian Dvorak & Sebastian Fehrler & Lars Hornuf & Hsuan Yu Lin & Bettina von Helversen, 2022. "Similarity and Consistency in Algorithm-Guided Exploration," CESifo Working Paper Series 10188, CESifo.
    4. Heinrich, Torsten & Yang, Jangho & Dai, Shuanping, 2020. "Growth, development, and structural change at the firm-level: The example of the PR China," MPRA Paper 105011, University Library of Munich, Germany.
    5. Niels Lundtorp Olsen & Alessia Pini & Simone Vantini, 2021. "False discovery rate for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 784-809, September.
    6. van Kesteren Erik-Jan & Bergkamp Tom, 2023. "Bayesian analysis of Formula One race results: disentangling driver skill and constructor advantage," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 19(4), pages 273-293, December.
    7. Xin Xu & Yang Lu & Yupeng Zhou & Zhiguo Fu & Yanjie Fu & Minghao Yin, 2021. "An Information-Explainable Random Walk Based Unsupervised Network Representation Learning Framework on Node Classification Tasks," Mathematics, MDPI, vol. 9(15), pages 1-14, July.
    8. Xiaoyue Xi & Simon E. F. Spencer & Matthew Hall & M. Kate Grabowski & Joseph Kagaayi & Oliver Ratmann & Rakai Health Sciences Program and PANGEA‐HIV, 2022. "Inferring the sources of HIV infection in Africa from deep‐sequence data with semi‐parametric Bayesian Poisson flow models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 517-540, June.
    9. Kuschnig, Nikolas, 2021. "Bayesian Spatial Econometrics and the Need for Software," Department of Economics Working Paper Series 318, WU Vienna University of Economics and Business.
    10. Deniz Aksoy & David Carlson, 2022. "Electoral support and militants’ targeting strategies," Journal of Peace Research, Peace Research Institute Oslo, vol. 59(2), pages 229-241, March.
    11. Richard Hunt & Shelton Peiris & Neville Weber, 2022. "Estimation methods for stationary Gegenbauer processes," Statistical Papers, Springer, vol. 63(6), pages 1707-1741, December.
    12. D. Fouskakis & G. Petrakos & I. Rotous, 2020. "A Bayesian longitudinal model for quantifying students’ preferences regarding teaching quality indicators," METRON, Springer;Sapienza Università di Roma, vol. 78(2), pages 255-270, August.
    13. Joseph B. Bak-Coleman & Ian Kennedy & Morgan Wack & Andrew Beers & Joseph S. Schafer & Emma S. Spiro & Kate Starbird & Jevin D. West, 2022. "Combining interventions to reduce the spread of viral misinformation," Nature Human Behaviour, Nature, vol. 6(10), pages 1372-1380, October.
    14. Jonas Moss & Riccardo De Bin, 2023. "Modelling publication bias and p‐hacking," Biometrics, The International Biometric Society, vol. 79(1), pages 319-331, March.
    15. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    16. David M. Phillippo & Sofia Dias & A. E. Ades & Mark Belger & Alan Brnabic & Alexander Schacht & Daniel Saure & Zbigniew Kadziola & Nicky J. Welton, 2020. "Multilevel network meta‐regression for population‐adjusted treatment comparisons," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1189-1210, June.
    17. Matthias Breuer & Harm H. Schütt, 2023. "Accounting for uncertainty: an application of Bayesian methods to accruals models," Review of Accounting Studies, Springer, vol. 28(2), pages 726-768, June.
    18. Loke Schmalensee & Pauline Caillault & Katrín Hulda Gunnarsdóttir & Karl Gotthard & Philipp Lehmann, 2023. "Seasonal specialization drives divergent population dynamics in two closely related butterflies," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    19. Edgar Santos‐Fernandez & Erin E. Peterson & Julie Vercelloni & Em Rushworth & Kerrie Mengersen, 2021. "Correcting misclassification errors in crowdsourced ecological data: A Bayesian perspective," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 147-173, January.
    20. Barakat, Bilal Fouad & Dharamshi, Ameer & Alkema, Leontine & Antoninis, Manos, 2021. "Adjusted Bayesian Completion Rates (ABC) Estimation," SocArXiv at368, Center for Open Science.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0222939. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.