IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0222362.html
   My bibliography  Save this article

Robust methods in Mendelian randomization via penalization of heterogeneous causal estimates

Author

Listed:
  • Jessica M B Rees
  • Angela M Wood
  • Frank Dudbridge
  • Stephen Burgess

Abstract

Methods have been developed for Mendelian randomization that can obtain consistent causal estimates under weaker assumptions than the standard instrumental variable assumptions. The median-based estimator and MR-Egger are examples of such methods. However, these methods can be sensitive to genetic variants with heterogeneous causal estimates. Such heterogeneity may arise from over-dispersion in the causal estimates, or specific variants with outlying causal estimates. In this paper, we develop three extensions to robust methods for Mendelian randomization with summarized data: 1) robust regression (MM-estimation); 2) penalized weights; and 3) Lasso penalization. Methods using these approaches are considered in two applied examples: one where there is evidence of over-dispersion in the causal estimates (the causal effect of body mass index on schizophrenia risk), and the other containing outliers (the causal effect of low-density lipoprotein cholesterol on Alzheimer’s disease risk). Through an extensive simulation study, we demonstrate that robust regression applied to the inverse-variance weighted method with penalized weights is a worthwhile additional sensitivity analysis for Mendelian randomization to provide robustness to variants with outlying causal estimates. The results from the applied examples and simulation study highlight the importance of using methods that make different assumptions to assess the robustness of findings from Mendelian randomization investigations with multiple genetic variants.

Suggested Citation

  • Jessica M B Rees & Angela M Wood & Frank Dudbridge & Stephen Burgess, 2019. "Robust methods in Mendelian randomization via penalization of heterogeneous causal estimates," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-24, September.
  • Handle: RePEc:plo:pone00:0222362
    DOI: 10.1371/journal.pone.0222362
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0222362
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0222362&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0222362?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michal Kolesár & Raj Chetty & John Friedman & Edward Glaeser & Guido W. Imbens, 2015. "Identification and Inference With Many Invalid Instruments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 474-484, October.
    2. Zhihong Zhu & Zhili Zheng & Futao Zhang & Yang Wu & Maciej Trzaskowski & Robert Maier & Matthew R. Robinson & John J. McGrath & Peter M. Visscher & Naomi R. Wray & Jian Yang, 2018. "Causal associations between risk factors and common diseases inferred from GWAS summary data," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    3. Hyunseung Kang & Anru Zhang & T. Tony Cai & Dylan S. Small, 2016. "Instrumental Variables Estimation With Some Invalid Instruments and its Application to Mendelian Randomization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 132-144, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hans (J.L.W.) van Kippersluis & Niels (C.A.) Rietveld, 2017. "Beyond Plausibly Exogenous," Tinbergen Institute Discussion Papers 17-096/V, Tinbergen Institute.
    2. Frank Windmeijer & Helmut Farbmacher & Neil Davies & George Davey Smith, 2019. "On the Use of the Lasso for Instrumental Variables Estimation with Some Invalid Instruments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1339-1350, July.
    3. Gyuhyeong Goh & Jisang Yu, 2022. "Causal inference with some invalid instrumental variables: A quasi‐Bayesian approach," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(6), pages 1432-1451, December.
    4. Qingliang Fan & Yaqian Wu, 2020. "Endogenous Treatment Effect Estimation with some Invalid and Irrelevant Instruments," Papers 2006.14998, arXiv.org.
    5. Damian Clarke & Benjamín Matta, 2018. "Practical considerations for questionable IVs," Stata Journal, StataCorp LP, vol. 18(3), pages 663-691, September.
    6. Guo, Zijian & Kang, Hyunseung & Cai, T. Tony & Small, Dylan S., 2018. "Testing endogeneity with high dimensional covariates," Journal of Econometrics, Elsevier, vol. 207(1), pages 175-187.
    7. Ruoyao Shi & Zhipeng Liao, 2018. "An Averaging GMM Estimator Robust to Misspecification," Working Papers 201803, University of California at Riverside, Department of Economics.
    8. Byunghoon Kang, 2018. "Higher Order Approximation of IV Estimators with Invalid Instruments," Working Papers 257105320, Lancaster University Management School, Economics Department.
    9. Nicolas Apfel, 2019. "Relaxing the Exclusion Restriction in Shift-Share Instrumental Variable Estimation," Papers 1907.00222, arXiv.org, revised Jul 2022.
    10. Frank Windmeijer & Xiaoran Liang & Fernando P. Hartwig & Jack Bowden, 2021. "The confidence interval method for selecting valid instrumental variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 752-776, September.
    11. Jason Hartford & Victor Veitch & Dhanya Sridhar & Kevin Leyton-Brown, 2020. "Valid Causal Inference with (Some) Invalid Instruments," Papers 2006.11386, arXiv.org.
    12. Hyunseung Kang & Youjin Lee & T. Tony Cai & Dylan S. Small, 2022. "Two robust tools for inference about causal effects with invalid instruments," Biometrics, The International Biometric Society, vol. 78(1), pages 24-34, March.
    13. Yiqi Lin & Frank Windmeijer & Xinyuan Song & Qingliang Fan, 2022. "On the instrumental variable estimation with many weak and invalid instruments," Papers 2207.03035, arXiv.org, revised Dec 2023.
    14. Sophie van Huellen & Duo Qin, 2019. "Compulsory Schooling and Returns to Education: A Re-Examination," Econometrics, MDPI, vol. 7(3), pages 1-20, September.
    15. Brigham Frandsen & Lars Lefgren & Emily Leslie, 2023. "Judging Judge Fixed Effects," American Economic Review, American Economic Association, vol. 113(1), pages 253-277, January.
    16. Anna Aizer & Joseph J. Doyle, 2015. "Juvenile Incarceration, Human Capital, and Future Crime: Evidence from Randomly Assigned Judges," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 130(2), pages 759-803.
    17. Mertens, Matthias & Müller, Steffen & Neuschäffer, Georg, 2022. "Identifying rent-sharing using firms' energy input mix," IWH Discussion Papers 19/2022, Halle Institute for Economic Research (IWH).
    18. Kirill Borusyak & Peter Hull & Xavier Jaravel, 2022. "Quasi-Experimental Shift-Share Research Designs," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 89(1), pages 181-213.
    19. Xiaoran Liang & Eleanor Sanderson & Frank Windmeijer, 2022. "Selecting Valid Instrumental Variables in Linear Models with Multiple Exposure Variables: Adaptive Lasso and the Median-of-Medians Estimator," Papers 2208.05278, arXiv.org.
    20. Zhen Qiao & Julia Sidorenko & Joana A. Revez & Angli Xue & Xueling Lu & Katri Pärna & Harold Snieder & Peter M. Visscher & Naomi R. Wray & Loic Yengo, 2023. "Estimation and implications of the genetic architecture of fasting and non-fasting blood glucose," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0222362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.