IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0221872.html
   My bibliography  Save this article

Simulation of pedestrian evacuation route choice using social force model in large-scale public space: Comparison of five evacuation strategies

Author

Listed:
  • Jibiao Zhou
  • Yanyong Guo
  • Sheng Dong
  • Minjie Zhang
  • Tianqi Mao

Abstract

The primary objective of this study is to compare pedestrian evacuation strategies in the large-scale public space (LPS) using microscopic model. Data were collected by video recording from Tian-yi square for 36 hours in city of Ningbo, China. A pedestrian evacuation simulation model was developed based on the social force model (SFM). The simulation model parameters, such as reaction time, elasticity coefficient, sliding coefficient, et al, were calibrated using the real data extracted from the video. Five evacuation strategies, strategy 1 (S1) to strategy 5 (S5) involving distance, density and capacity factors were simulated and compared by indicators of evacuation time and channel utilization rate, as well as the evacuation efficiency. The simulation model parameters calibration results showed that a) the pedestrians walking speed is 1.0 ~ 1.5m/s; b) the pedestrians walking diameter is 0.3 ~ 0.4m; c) the frequency of pedestrian arrival and departure followed multi-normal distribution. The simulation results showed that, (a) in terms of total evacuation time, the performance of S4 and S5 which considering the capacity and density factors were best in all evacuation scenarios, the performance of S3 which only considering the density factor was the worst, relatively, and S1 and S2 which considering the distance factor were in the middle. (b) the utilization rate of channels under S5 strategy was better than other strategies, which performs best in the balance of evacuation. S3 strategy was the worst, and S1, S2 and S4 were in the middle. (c) in terms of the evacuation efficiency, when the number of evacuees is within 2, 500 peds, the S1 and S2 strategy which considering the distance factor have best evacuation efficiency than other strategies. And when the number of evacuees is above 2, 500 peds, the S4 and S5 strategy which considering the capacity factor are better than others.

Suggested Citation

  • Jibiao Zhou & Yanyong Guo & Sheng Dong & Minjie Zhang & Tianqi Mao, 2019. "Simulation of pedestrian evacuation route choice using social force model in large-scale public space: Comparison of five evacuation strategies," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-24, September.
  • Handle: RePEc:plo:pone00:0221872
    DOI: 10.1371/journal.pone.0221872
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0221872
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0221872&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0221872?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dirk Helbing & Illés Farkas & Tamás Vicsek, 2000. "Simulating dynamical features of escape panic," Nature, Nature, vol. 407(6803), pages 487-490, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haotian Zheng & Shuchuan Zhang & Junqi Zhu & Ziyan Zhu & Xin Fang, 2022. "Evacuation in Buildings Based on BIM: Taking a Fire in a University Library as an Example," IJERPH, MDPI, vol. 19(23), pages 1-21, December.
    2. Sheng Dong & Jibiao Zhou & Changxi Ma, 2020. "Design of a Network Optimization Platform for the Multivehicle Transportation of Hazardous Materials," IJERPH, MDPI, vol. 17(3), pages 1-14, February.
    3. Zhou, Jibiao & Chen, Siyuan & Ma, Changxi & Dong, Sheng, 2022. "Stability analysis of pedestrian traffic flow in horizontal channels: A numerical simulation method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stock, Eduardo Velasco & da Silva, Roberto, 2023. "Lattice gas model to describe a nightclub dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    2. Varas, A. & Cornejo, M.D. & Mainemer, D. & Toledo, B. & Rogan, J. & Muñoz, V. & Valdivia, J.A., 2007. "Cellular automaton model for evacuation process with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 631-642.
    3. Murilo S Baptista & Hai-Peng Ren & Johen C M Swarts & Rodrigo Carareto & Henk Nijmeijer & Celso Grebogi, 2012. "Collective Almost Synchronisation in Complex Networks," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-11, November.
    4. Xianing Wang & Zhan Zhang & Ying Wang & Jun Yang & Linjun Lu, 2022. "A Study on Safety Evaluation of Pedestrian Flows Based on Partial Impact Dynamics by Real-Time Data in Subway Stations," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    5. Chen, Changkun & Sun, Huakai & Lei, Peng & Zhao, Dongyue & Shi, Congling, 2021. "An extended model for crowd evacuation considering pedestrian panic in artificial attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    6. Michael Batty & Jake Desyllas & Elspeth Duxbury, 2003. "Safety in Numbers? Modelling Crowds and Designing Control for the Notting Hill Carnival," Urban Studies, Urban Studies Journal Limited, vol. 40(8), pages 1573-1590, July.
    7. Ma, Jian & Song, Wei-guo & Zhang, Jun & Lo, Siu-ming & Liao, Guang-xuan, 2010. "k-Nearest-Neighbor interaction induced self-organized pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2101-2117.
    8. Illés J Farkas & Shuohong Wang, 2018. "Spatial flocking: Control by speed, distance, noise and delay," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-12, May.
    9. Zheng, Yaochen & Chen, Jianqiao & Wei, Junhong & Guo, Xiwei, 2012. "Modeling of pedestrian evacuation based on the particle swarm optimization algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4225-4233.
    10. Yue, Hao & Zhang, Junyao & Chen, Wenxin & Wu, Xinsen & Zhang, Xu & Shao, Chunfu, 2021. "Simulation of the influence of spatial obstacles on evacuation pedestrian flow in walking facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    11. Sungryong Bae & Jun-Ho Choi & Hong Sun Ryou, 2020. "Modification of Interaction Forces between Smoke and Evacuees," Energies, MDPI, vol. 13(16), pages 1-10, August.
    12. Lasse Pedersen, 2009. "When Everyone Runs for the Exit," International Journal of Central Banking, International Journal of Central Banking, vol. 5(4), pages 177-199, December.
    13. Shiwakoti, Nirajan & Sarvi, Majid, 2013. "Understanding pedestrian crowd panic: a review on model organisms approach," Journal of Transport Geography, Elsevier, vol. 26(C), pages 12-17.
    14. Ofer Tchernichovski & Marissa King & Peter Brinkmann & Xanadu Halkias & Daniel Fimiarz & Laurent Mars & Dalton Conley, 2017. "Tradeoff Between Distributed Social Learning and Herding Effect in Online Rating Systems," SAGE Open, , vol. 7(1), pages 21582440176, February.
    15. Krbálek, Milan & Hrabák, Pavel & Bukáček, Marek, 2018. "Pedestrian headways — Reflection of territorial social forces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 38-49.
    16. Natalie Fridman & Gal A. Kaminka, 2010. "Modeling pedestrian crowd behavior based on a cognitive model of social comparison theory," Computational and Mathematical Organization Theory, Springer, vol. 16(4), pages 348-372, December.
    17. Dirk Helbing & Pratik Mukerji, "undated". "Crowd Disasters as Systemic Failures: Analysis of the Love Parade Disaster," Working Papers ETH-RC-12-010, ETH Zurich, Chair of Systems Design.
    18. Liu, Qian, 2018. "A social force model for the crowd evacuation in a terrorist attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 315-330.
    19. Huan-Huan, Tian & Li-Yun, Dong & Yu, Xue, 2015. "Influence of the exits’ configuration on evacuation process in a room without obstacle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 164-178.
    20. Jijun Zhao & Ferenc Szidarovszky & Miklos N. Szilagyi, 2007. "Finite Neighborhood Binary Games: a Structural Study," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(3), pages 1-3.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0221872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.