IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0220371.html
   My bibliography  Save this article

Quantifying the incidence of severe-febrile-illness hospital admissions in sub-Saharan Africa

Author

Listed:
  • Paul Roddy
  • Ursula Dalrymple
  • Tomas O Jensen
  • Sabine Dittrich
  • V Bhargavi Rao
  • Daniel A Pfeffer
  • Katherine A Twohig
  • Teri Roberts
  • Oscar Bernal
  • Ethan Guillen

Abstract

Severe-febrile-illness (SFI) is a common cause of morbidity and mortality across sub-Saharan Africa (SSA). The burden of SFI in SSA is currently unknown and its estimation is fraught with challenges. This is due to a lack of diagnostic capacity for SFI in SSA, and thus a dearth of baseline data on the underlying etiology of SFI cases and scant SFI-specific causative-agent prevalence data. To highlight the public health significance of SFI in SSA, we developed a Bayesian model to quantify the incidence of SFI hospital admissions in SSA. Our estimates indicate a mean population-weighted SFI-inpatient-admission incidence rate of 18.4 (6.8–31.1, 68% CrI) per 1000 people for the year 2014, across all ages within areas of SSA with stable Plasmodium falciparum transmission. We further estimated a total of 16,200,337 (5,993,249–27,321,779, 68% CrI) SFI hospital admissions. This analysis reveals the significant burden of SFI in hospitals in SSA, but also highlights the paucity of pathogen-specific prevalence and incidence data for SFI in SSA. Future improvements in pathogen-specific diagnostics for causative agents of SFI will increase the abundance of SFI-specific prevalence and incidence data, aid future estimations of SFI burden, and enable clinicians to identify SFI-specific pathogens, administer appropriate treatment and management, and facilitate appropriate antibiotic use.

Suggested Citation

  • Paul Roddy & Ursula Dalrymple & Tomas O Jensen & Sabine Dittrich & V Bhargavi Rao & Daniel A Pfeffer & Katherine A Twohig & Teri Roberts & Oscar Bernal & Ethan Guillen, 2019. "Quantifying the incidence of severe-febrile-illness hospital admissions in sub-Saharan Africa," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-19, July.
  • Handle: RePEc:plo:pone00:0220371
    DOI: 10.1371/journal.pone.0220371
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220371
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0220371&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0220371?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kristensen, Kasper & Nielsen, Anders & Berg, Casper W. & Skaug, Hans & Bell, Bradley M., 2016. "TMB: Automatic Differentiation and Laplace Approximation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i05).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Judith U. Oguzie & Brittany A. Petros & Paul E. Oluniyi & Samar B. Mehta & Philomena E. Eromon & Parvathy Nair & Opeoluwa Adewale-Fasoro & Peace Damilola Ifoga & Ikponmwosa Odia & Andrzej Pastusiak & , 2023. "Metagenomic surveillance uncovers diverse and novel viral taxa in febrile patients from Nigeria," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katie Wilson & Jon Wakefield, 2022. "A probabilistic model for analyzing summary birth history data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 47(11), pages 291-344.
    2. David M Keith & Jessica A Sameoto & Freya M Keyser & Christine A Ward-Paige, 2020. "Evaluating socio-economic and conservation impacts of management: A case study of time-area closures on Georges Bank," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-25, October.
    3. Ben C. Stevenson & Rachel M. Fewster & Koustubh Sharma, 2022. "Spatial correlation structures for detections of individuals in spatial capture–recapture models," Biometrics, The International Biometric Society, vol. 78(3), pages 963-973, September.
    4. Yuan Yan & Eva Cantoni & Chris Field & Margaret Treble & Joanna Mills Flemming, 2023. "Spatiotemporal modeling of mature‐at‐length data using a sliding window approach," Environmetrics, John Wiley & Sons, Ltd., vol. 34(2), March.
    5. Xin Jin, 2021. "Can we imitate the principal investor's behavior to learn option price?," Papers 2105.11376, arXiv.org, revised Jan 2022.
    6. Han, Jeongseop & Lee, Youngjo, 2024. "Enhanced Laplace approximation," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    7. Benny Ren & Ian Barnett, 2023. "Combining mixed effects hidden Markov models with latent alternating recurrent event processes to model diurnal active–rest cycles," Biometrics, The International Biometric Society, vol. 79(4), pages 3402-3417, December.
    8. Aaron Osgood‐Zimmerman & Jon Wakefield, 2023. "A Statistical Review of Template Model Builder: A Flexible Tool for Spatial Modelling," International Statistical Review, International Statistical Institute, vol. 91(2), pages 318-342, August.
    9. Øystein Sørensen & Anders M. Fjell & Kristine B. Walhovd, 2023. "Longitudinal Modeling of Age-Dependent Latent Traits with Generalized Additive Latent and Mixed Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 456-486, June.
    10. David L. Miller & Richard Glennie & Andrew E. Seaton, 2020. "Understanding the Stochastic Partial Differential Equation Approach to Smoothing," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(1), pages 1-16, March.
    11. Théo Michelot & Richard Glennie & Catriona Harris & Len Thomas, 2021. "Varying-Coefficient Stochastic Differential Equations with Applications in Ecology," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 446-463, September.
    12. Jenni Niku & Francis K. C. Hui & Sara Taskinen & David I. Warton, 2021. "Analyzing environmental‐trait interactions in ecological communities with fourth‐corner latent variable models," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
    13. Daniel Ovando & Gary D. Libecap & Katherine D. Millage & Lennon Thomas, 2020. "Coasean Approaches to Ending Overfishing: Bigeye Tuna Conservation in the Western and Central Pacific Ocean," NBER Working Papers 27801, National Bureau of Economic Research, Inc.
    14. Jenni Niku & David I. Warton & Francis K. C. Hui & Sara Taskinen, 2017. "Generalized Linear Latent Variable Models for Multivariate Count and Biomass Data in Ecology," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(4), pages 498-522, December.
    15. Yan Cui & Qi Li & Fukang Zhu, 2020. "Flexible bivariate Poisson integer-valued GARCH model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(6), pages 1449-1477, December.
    16. Riki Herliansyah & Ruth King & Stuart King, 2022. "Laplace Approximations for Capture–Recapture Models in the Presence of Individual Heterogeneity," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(3), pages 401-418, September.
    17. Flores-Agreda, Daniel & Cantoni, Eva, 2019. "Bootstrap estimation of uncertainty in prediction for generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 130(C), pages 1-17.
    18. Tim C. D. Lucas & Anita K. Nandi & Elisabeth G. Chestnutt & Katherine A. Twohig & Suzanne H. Keddie & Emma L. Collins & Rosalind E. Howes & Michele Nguyen & Susan F. Rumisha & Andre Python & Rohan Ara, 2021. "Mapping malaria by sharing spatial information between incidence and prevalence data sets," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 733-749, June.
    19. Simon N. Wood, 2020. "Inference and computation with generalized additive models and their extensions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 307-339, June.
    20. Mikkel L. Sørensen & Peter Nystrup & Mathias B. Bjerregård & Jan K. Møller & Peder Bacher & Henrik Madsen, 2023. "Recent developments in multivariate wind and solar power forecasting," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0220371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.