IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49566-6.html
   My bibliography  Save this article

Dissecting heritability, environmental risk, and air pollution causal effects using > 50 million individuals in MarketScan

Author

Listed:
  • Daniel McGuire

    (Penn State College of Medicine)

  • Havell Markus

    (Penn State College of Medicine of Medicine
    Penn State College of Medicine
    Penn State College of Medicine)

  • Lina Yang

    (Penn State College of Medicine)

  • Jingyu Xu

    (Penn State College of Medicine)

  • Austin Montgomery

    (Penn State College of Medicine of Medicine)

  • Arthur Berg

    (Penn State College of Medicine)

  • Qunhua Li

    (Penn State University)

  • Laura Carrel

    (Penn State College of Medicine)

  • Dajiang J. Liu

    (Penn State College of Medicine)

  • Bibo Jiang

    (Penn State College of Medicine)

Abstract

Large national-level electronic health record (EHR) datasets offer new opportunities for disentangling the role of genes and environment through deep phenotype information and approximate pedigree structures. Here we use the approximate geographical locations of patients as a proxy for spatially correlated community-level environmental risk factors. We develop a spatial mixed linear effect (SMILE) model that incorporates both genetics and environmental contribution. We extract EHR and geographical locations from 257,620 nuclear families and compile 1083 disease outcome measurements from the MarketScan dataset. We augment the EHR with publicly available environmental data, including levels of particulate matter 2.5 (PM2.5), nitrogen dioxide (NO2), climate, and sociodemographic data. We refine the estimates of genetic heritability and quantify community-level environmental contributions. We also use wind speed and direction as instrumental variables to assess the causal effects of air pollution. In total, we find PM2.5 or NO2 have statistically significant causal effects on 135 diseases, including respiratory, musculoskeletal, digestive, metabolic, and sleep disorders, where PM2.5 and NO2 tend to affect biologically distinct disease categories. These analyses showcase several robust strategies for jointly modeling genetic and environmental effects on disease risk using large EHR datasets and will benefit upcoming biobank studies in the era of precision medicine.

Suggested Citation

  • Daniel McGuire & Havell Markus & Lina Yang & Jingyu Xu & Austin Montgomery & Arthur Berg & Qunhua Li & Laura Carrel & Dajiang J. Liu & Bibo Jiang, 2024. "Dissecting heritability, environmental risk, and air pollution causal effects using > 50 million individuals in MarketScan," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49566-6
    DOI: 10.1038/s41467-024-49566-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49566-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49566-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tatyana Deryugina & Garth Heutel & Nolan H. Miller & David Molitor & Julian Reif, 2019. "The Mortality and Medical Costs of Air Pollution: Evidence from Changes in Wind Direction," American Economic Review, American Economic Association, vol. 109(12), pages 4178-4219, December.
    2. Qiang Zhang & Xujia Jiang & Dan Tong & Steven J. Davis & Hongyan Zhao & Guannan Geng & Tong Feng & Bo Zheng & Zifeng Lu & David G. Streets & Ruijing Ni & Michael Brauer & Aaron van Donkelaar & Randall, 2017. "Transboundary health impacts of transported global air pollution and international trade," Nature, Nature, vol. 543(7647), pages 705-709, March.
    3. Kristensen, Kasper & Nielsen, Anders & Berg, Casper W. & Skaug, Hans & Bell, Bradley M., 2016. "TMB: Automatic Differentiation and Laplace Approximation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i05).
    4. Gayan Bowatte & Rachel Tham & Jennifer L. Perret & Michael S. Bloom & Guanghui Dong & Nilakshi Waidyatillake & Dinh Bui & Geoffrey G. Morgan & Bin Jalaludin & Caroline J. Lodge & Shyamali C. Dharmage, 2018. "Air Pollution and Otitis Media in Children: A Systematic Review of Literature," IJERPH, MDPI, vol. 15(2), pages 1-19, February.
    5. Angli Xue & Yang Wu & Zhihong Zhu & Futao Zhang & Kathryn E. Kemper & Zhili Zheng & Loic Yengo & Luke R. Lloyd-Jones & Julia Sidorenko & Yeda Wu & Allan F. McRae & Peter M. Visscher & Jian Zeng & Jian, 2018. "Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
    6. Roger S. Bivand & David W. S. Wong, 2018. "Comparing implementations of global and local indicators of spatial association," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 716-748, September.
    7. Clare Bycroft & Colin Freeman & Desislava Petkova & Gavin Band & Lloyd T. Elliott & Kevin Sharp & Allan Motyer & Damjan Vukcevic & Olivier Delaneau & Jared O’Connell & Adrian Cortes & Samantha Welsh &, 2018. "The UK Biobank resource with deep phenotyping and genomic data," Nature, Nature, vol. 562(7726), pages 203-209, October.
    8. Evan Herrnstadt & Erich Muehlegger, 2015. "Air Pollution and Criminal Activity: Evidence from Chicago Microdata," NBER Working Papers 21787, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guidetti, Bruna & Pereda, Paula & Severnini, Edson R., 2020. "Health Shocks under Hospital Capacity Constraint: Evidence from Air Pollution in Sao Paulo, Brazil," IZA Discussion Papers 13211, Institute of Labor Economics (IZA).
    2. Duque, Valentina & Gilraine, Michael, 2022. "Coal use, air pollution, and student performance," Journal of Public Economics, Elsevier, vol. 213(C).
    3. Zhen Qiao & Julia Sidorenko & Joana A. Revez & Angli Xue & Xueling Lu & Katri Pärna & Harold Snieder & Peter M. Visscher & Naomi R. Wray & Loic Yengo, 2023. "Estimation and implications of the genetic architecture of fasting and non-fasting blood glucose," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Mengna Luan & Zhigang Tao & Hongjie Yuan, 2023. "Alive but not well: The neglected cost of air pollution," Health Economics, John Wiley & Sons, Ltd., vol. 32(11), pages 2535-2567, November.
    5. Jennifer A. Heissel & Claudia Persico & David Simon, 2022. "Does Pollution Drive Achievement? The Effect of Traffic Pollution on Academic Performance," Journal of Human Resources, University of Wisconsin Press, vol. 57(3), pages 747-776.
    6. Yu Huang & Denis Plotnikov & Huan Wang & Danli Shi & Cong Li & Xueli Zhang & Xiayin Zhang & Shulin Tang & Xianwen Shang & Yijun Hu & Honghua Yu & Hongyang Zhang & Jeremy A. Guggenheim & Mingguang He, 2024. "GWAS-by-subtraction reveals an IOP-independent component of primary open angle glaucoma," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Clara Kögel, 2022. "The impact of air pollution on labour productivity in France," Documents de travail du Centre d'Economie de la Sorbonne 22020, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    8. Zhi Cao & Jingbo Zhou & Meng Li & Jizhou Huang & Dejing Dou, 2023. "Urbanites’ mental health undermined by air pollution," Nature Sustainability, Nature, vol. 6(4), pages 470-478, April.
    9. Bruna Morais Guidetti & Paula Carvalho Pereda, Edson Roberto Severnini, 2021. "Health Shocks under Hospital Capacity Constraints: Evidence from Air Pollution in São Paulo, Brazil," Working Papers, Department of Economics 2021_05, University of São Paulo (FEA-USP).
    10. Barrows, Geoffrey & Garg, Teevrat & Jha, Akshaya, 2019. "The Health Costs of Coal-Fired Power Plants in India," IZA Discussion Papers 12838, Institute of Labor Economics (IZA).
    11. Matteo Di Scipio & Mohammad Khan & Shihong Mao & Michael Chong & Conor Judge & Nazia Pathan & Nicolas Perrot & Walter Nelson & Ricky Lali & Shuang Di & Robert Morton & Jeremy Petch & Guillaume Paré, 2023. "A versatile, fast and unbiased method for estimation of gene-by-environment interaction effects on biobank-scale datasets," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Luis Guillermo Becerra-Valbuena & Jorge A. Bonilla, 2021. "Climatic shocks, air quality, and health at birth in Bogotá," Working Papers halshs-03429482, HAL.
    13. Wen-Yong Guo & Josep M. Serra-Diaz & Wolf L. Eiserhardt & Brian S. Maitner & Cory Merow & Cyrille Violle & Matthew J. Pound & Miao Sun & Ferry Slik & Anne Blach-Overgaard & Brian J. Enquist & Jens-Chr, 2023. "Climate change and land use threaten global hotspots of phylogenetic endemism for trees," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    14. Jacob Joseph & Chang Liu & Qin Hui & Krishna Aragam & Zeyuan Wang & Brian Charest & Jennifer E. Huffman & Jacob M. Keaton & Todd L. Edwards & Serkalem Demissie & Luc Djousse & Juan P. Casas & J. Micha, 2022. "Genetic architecture of heart failure with preserved versus reduced ejection fraction," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    15. Katie Wilson & Jon Wakefield, 2022. "A probabilistic model for analyzing summary birth history data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 47(11), pages 291-344.
    16. Vincent Michaud & Eulalie Lasseaux & David J. Green & Dave T. Gerrard & Claudio Plaisant & Tomas Fitzgerald & Ewan Birney & Benoît Arveiler & Graeme C. Black & Panagiotis I. Sergouniotis, 2022. "The contribution of common regulatory and protein-coding TYR variants to the genetic architecture of albinism," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    17. Ju, Heng & Tang, Yao & Zhang, Meilan, 2024. "Air Pollution's Grip: Drug Cost and Its Heterogeneity in China," MPRA Paper 121154, University Library of Munich, Germany.
    18. Natalie DeForest & Yuqi Wang & Zhiyi Zhu & Jacqueline S. Dron & Ryan Koesterer & Pradeep Natarajan & Jason Flannick & Tiffany Amariuta & Gina M. Peloso & Amit R. Majithia, 2024. "Genome-wide discovery and integrative genomic characterization of insulin resistance loci using serum triglycerides to HDL-cholesterol ratio as a proxy," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    19. Evangelina Dardati & Ramiro de Elejalde & Eugenio Giolito, 2024. "On the short‐term impact of pollution: The effect of PM 2.5 on emergency room visits," Health Economics, John Wiley & Sons, Ltd., vol. 33(3), pages 482-508, March.
    20. Dick Schijven & Sourena Soheili-Nezhad & Simon E. Fisher & Clyde Francks, 2024. "Exome-wide analysis implicates rare protein-altering variants in human handedness," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49566-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.