IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v89y2016i2p1-1110.1140-epjb-e2016-60498-7.html
   My bibliography  Save this article

Coverage centralities for temporal networks

Author

Listed:
  • Taro Takaguchi
  • Yosuke Yano
  • Yuichi Yoshida

Abstract

Structure of real networked systems, such as social relationship, can be modeled as temporal networks in which each edge appears only at the prescribed time. Understanding the structure of temporal networks requires quantifying the importance of a temporal vertex, which is a pair of vertex index and time. In this paper, we define two centrality measures of a temporal vertex based on the fastest temporal paths which use the temporal vertex. The definition is free from parameters and robust against the change in time scale on which we focus. In addition, we can efficiently compute these centrality values for all temporal vertices. Using the two centrality measures, we reveal that distributions of these centrality values of real-world temporal networks are heterogeneous. For various datasets, we also demonstrate that a majority of the highly central temporal vertices are located within a narrow time window around a particular time. In other words, there is a bottleneck time at which most information sent in the temporal network passes through a small number of temporal vertices, which suggests an important role of these temporal vertices in spreading phenomena. Copyright The Author(s) 2016

Suggested Citation

  • Taro Takaguchi & Yosuke Yano & Yuichi Yoshida, 2016. "Coverage centralities for temporal networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(2), pages 1-11, February.
  • Handle: RePEc:spr:eurphb:v:89:y:2016:i:2:p:1-11:10.1140/epjb/e2016-60498-7
    DOI: 10.1140/epjb/e2016-60498-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1140/epjb/e2016-60498-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1140/epjb/e2016-60498-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Jiu-Lei & Fang, Hui & Li, Sheng-Qing & Li, Wei-Min, 2022. "Identifying important nodes for temporal networks based on the ASAM model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    2. Ayana Aspembitova & Ling Feng & Valentin Melnikov & Lock Yue Chew, 2019. "Fitness preferential attachment as a driving mechanism in bitcoin transaction network," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-20, August.
    3. Andrew Mellor, 2019. "Event Graphs: Advances And Applications Of Second-Order Time-Unfolded Temporal Network Models," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-26, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:89:y:2016:i:2:p:1-11:10.1140/epjb/e2016-60498-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.