IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0218425.html
   My bibliography  Save this article

Adaptive fractional fuzzy sliding mode control of microgyroscope based on backstepping design

Author

Listed:
  • Xiao Liang
  • Juntao Fei

Abstract

In this paper, a robust sliding mode control (SMC) based on backstepping technique is studied for a microgyroscope in the presence of unknown model uncertainties and external disturbances using adaptive fuzzy compensator and fractional calculus. At first, the dynamic of microgyroscope is transformed into analogically cascade system to guarantee the application of backstepping design. Then a novel fractional differential sliding surface is proposed which integrates the capacities of the fractional calculus and SMC. In order to reduce the chattering in SMC, a fuzzy logical system is utilized to approximate the external disturbances. In addition, fractional order adaptive laws are derived to estimate the damping and stiffness coefficients and angular velocity online based on Lyapunov stability theory which also guarantees the stability of the closed loop system. Finally, simulation results signify the robustness and effectiveness of the proposed control schemes and the comparison of root mean square error under different fractional orders and integer order are given to demonstrate the better performance of proposed controller.

Suggested Citation

  • Xiao Liang & Juntao Fei, 2019. "Adaptive fractional fuzzy sliding mode control of microgyroscope based on backstepping design," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-21, June.
  • Handle: RePEc:plo:pone00:0218425
    DOI: 10.1371/journal.pone.0218425
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0218425
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0218425&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0218425?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cheng Liu & Guowei Cai & Jiwei Gao & Deyou Yang, 2017. "Design of Nonlinear Robust Damping Controller for Power Oscillations Suppressing Based on Backstepping-Fractional Order Sliding Mode," Energies, MDPI, vol. 10(5), pages 1-23, May.
    2. Atangana, Abdon & Gómez-Aguilar, J.F., 2017. "Hyperchaotic behaviour obtained via a nonlocal operator with exponential decay and Mittag-Leffler laws," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 285-294.
    3. Park, Sungsu & Horowitz, Roberto & Tan, Chin-woo, 2002. "Adaptive Control for MEMS Gyroscopes," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt8r78v641, Institute of Transportation Studies, UC Berkeley.
    4. Atangana, Abdon, 2018. "Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 688-706.
    5. Juntao Fei & Xiao Liang, 2018. "Adaptive Backstepping Fuzzy Neural Network Fractional-Order Control of Microgyroscope Using a Nonsingular Terminal Sliding Mode Controller," Complexity, Hindawi, vol. 2018, pages 1-12, September.
    6. Park, Park & Horowitz, Roberto & Tan, Chin-woo, 2002. "Adaptive Control for Conventional Modes of Operation of MEMS Gyroscopes," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt83v0r9m1, Institute of Transportation Studies, UC Berkeley.
    7. Park, Sungsu & Horowitz, Roberto & Tan, Chin-woo, 2002. "Digital Implementation of Adaptive Control Algorithms for MEMS Gyroscopes," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4708b2sj, Institute of Transportation Studies, UC Berkeley.
    8. Zhilin Feng & Juntao Fei, 2018. "Design and analysis of adaptive Super-Twisting sliding mode control for a microgyroscope," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yavuz, Mehmet & Bonyah, Ebenezer, 2019. "New approaches to the fractional dynamics of schistosomiasis disease model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 373-393.
    2. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    3. Kubeka, Amos S. & Doungmo Goufo, Emile F. & Khumalo, Melusi, 2018. "On the quasi-normal modes of a Schwarzschild white hole for the lower angular momentum and perturbation by non-local fractional operators," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 348-357.
    4. Owolabi, Kolade M., 2019. "Mathematical modelling and analysis of love dynamics: A fractional approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 849-865.
    5. Al-khedhairi, A. & Elsadany, A.A. & Elsonbaty, A., 2019. "Modelling immune systems based on Atangana–Baleanu fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 25-39.
    6. Owolabi, Kolade M. & Pindza, Edson, 2019. "Modeling and simulation of nonlinear dynamical system in the frame of nonlocal and non-singular derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 146-157.
    7. Yin, Baoli & Liu, Yang & Li, Hong, 2020. "A class of shifted high-order numerical methods for the fractional mobile/immobile transport equations," Applied Mathematics and Computation, Elsevier, vol. 368(C).
    8. Bandaliyev, R.A. & Ibayev, E.A. & Omarova, K.K., 2021. "Investigation of fractional order differential equation for boundary functional of a semi-Markov random walk process with negative drift and positive jumps," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    9. Mahmood, Tariq & ur Rahman, Mati & Arfan, Muhammad & Kayani, Sadaf-Ilyas & Sun, Mei, 2023. "Mathematical study of Algae as a bio-fertilizer using fractal–fractional dynamic model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 207-222.
    10. Xingbao Ju & Ping Zhao & Haishun Sun & Wei Yao & Jinyu Wen, 2017. "Nonlinear Synergetic Governor Controllers for Steam Turbine Generators to Enhance Power System Stability," Energies, MDPI, vol. 10(8), pages 1-16, July.
    11. Singh, C.S. & Singh, Harendra & Singh, Somveer & Kumar, Devendra, 2019. "An efficient computational method for solving system of nonlinear generalized Abel integral equations arising in astrophysics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1440-1448.
    12. Suwan, Iyad & Abdeljawad, Thabet & Jarad, Fahd, 2018. "Monotonicity analysis for nabla h-discrete fractional Atangana–Baleanu differences," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 50-59.
    13. Solís-Pérez, J.E. & Gómez-Aguilar, J.F. & Atangana, A., 2018. "Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 175-185.
    14. Peng, Li & Zhou, Yong & Debbouche, Amar, 2019. "Approximation techniques of optimal control problems for fractional dynamic systems in separable Hilbert spaces," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 234-241.
    15. Abro, Kashif Ali & Khan, Ilyas & Nisar, Kottakkaran Sooppy, 2019. "Novel technique of Atangana and Baleanu for heat dissipation in transmission line of electrical circuit," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 40-45.
    16. Hamid, M. & Usman, M. & Haq, R.U. & Wang, W., 2020. "A Chelyshkov polynomial based algorithm to analyze the transport dynamics and anomalous diffusion in fractional model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    17. Juntao Fei & Zhilin Feng, 2019. "Adaptive Fuzzy Super-Twisting Sliding Mode Control for Microgyroscope," Complexity, Hindawi, vol. 2019, pages 1-13, February.
    18. Chatibi, Y. & El Kinani, E.H. & Ouhadan, A., 2019. "Variational calculus involving nonlocal fractional derivative with Mittag–Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 117-121.
    19. Mishra, Jyoti, 2019. "Modified Chua chaotic attractor with differential operators with non-singular kernels," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 64-72.
    20. Doungmo Goufo, Emile F. & Mbehou, Mohamed & Kamga Pene, Morgan M., 2018. "A peculiar application of Atangana–Baleanu fractional derivative in neuroscience: Chaotic burst dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 170-176.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0218425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.