IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i5p676-d98689.html
   My bibliography  Save this article

Design of Nonlinear Robust Damping Controller for Power Oscillations Suppressing Based on Backstepping-Fractional Order Sliding Mode

Author

Listed:
  • Cheng Liu

    (School of Electrical Engineering, Northeast Electric Power University, Jilin 132012, China)

  • Guowei Cai

    (School of Electrical Engineering, Northeast Electric Power University, Jilin 132012, China)

  • Jiwei Gao

    (School of Electrical Engineering, Northeast Electric Power University, Jilin 132012, China)

  • Deyou Yang

    (School of Electrical Engineering, Northeast Electric Power University, Jilin 132012, China)

Abstract

In this paper, a novel nonlinear robust damping controller is proposed to suppress power oscillation in interconnected power systems. The proposed power oscillation damping controller exhibits good nonlinearity and robustness. It can consider the strong nonlinearity of power oscillation and uncertainty of its model. First, through differential homeomorphic mapping, a mathematical model of the system can be transformed into the Brunovsky standard. Next, an extended state observer (ESO) estimated and compensated for model errors and external disturbances as well as uncertain factors to achieve dynamic linearization of the nonlinear model. A power oscillation damping controller for interconnected power systems was designed on a backstepping-fractional order sliding mode variable structure control theory (BFSMC). Compared with traditional methods, the controller exhibits good dynamic performance and strong robustness. Simulations involving a four-generator two-area and partial test system of Northeast China were conducted under various disturbances to prove the effectiveness and robustness of the proposed damping control method.

Suggested Citation

  • Cheng Liu & Guowei Cai & Jiwei Gao & Deyou Yang, 2017. "Design of Nonlinear Robust Damping Controller for Power Oscillations Suppressing Based on Backstepping-Fractional Order Sliding Mode," Energies, MDPI, vol. 10(5), pages 1-23, May.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:5:p:676-:d:98689
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/5/676/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/5/676/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xingbao Ju & Ping Zhao & Haishun Sun & Wei Yao & Jinyu Wen, 2017. "Nonlinear Synergetic Governor Controllers for Steam Turbine Generators to Enhance Power System Stability," Energies, MDPI, vol. 10(8), pages 1-16, July.
    2. Yubo Liu & Junlong Fang & Kezhu Tan & Boyan Huang & Wenshuai He, 2020. "Sliding Mode Observer with Adaptive Parameter Estimation for Sensorless Control of IPMSM," Energies, MDPI, vol. 13(22), pages 1-18, November.
    3. Xiao Liang & Juntao Fei, 2019. "Adaptive fractional fuzzy sliding mode control of microgyroscope based on backstepping design," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:5:p:676-:d:98689. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.