IDEAS home Printed from https://ideas.repec.org/a/gam/jdataj/v6y2021i1p6-d481196.html
   My bibliography  Save this article

The Hierarchical Classifier for COVID-19 Resistance Evaluation

Author

Listed:
  • Nataliya Shakhovska

    (Department of Artificial Intelligence, Lviv Polytechnic National University, 5 Kniazia Romana str., 79000 Lviv, Ukraine)

  • Ivan Izonin

    (Department of Artificial Intelligence, Lviv Polytechnic National University, 5 Kniazia Romana str., 79000 Lviv, Ukraine)

  • Nataliia Melnykova

    (Department of Artificial Intelligence, Lviv Polytechnic National University, 5 Kniazia Romana str., 79000 Lviv, Ukraine)

Abstract

Finding dependencies in the data requires the analysis of relations between dozens of parameters of the studied process and hundreds of possible sources of influence on this process. Dependencies are nondeterministic and therefore modeling requires the use of statistical methods for analyzing random processes. Part of the information is often hidden from observation or not monitored. That is why many difficulties have arisen in the process of analyzing the collected information. The paper aims to find frequent patterns and parameters affected by COVID-19. The novelty of the paper is hierarchical architecture comprises supervised and unsupervised methods. It allows the development of an ensemble of the methods based on k-means clustering and classification. The best classifiers from the ensemble are random forest with 500 trees and XGBoost. Classification for separated clusters gives us higher accuracy on 4% in comparison with dataset analysis. The proposed approach can be used also for personalized medicine decision support in other domains. The features selection allows us to analyze the following features with the highest impact on COVID-19: age, sex, blood group, had influenza.

Suggested Citation

  • Nataliya Shakhovska & Ivan Izonin & Nataliia Melnykova, 2021. "The Hierarchical Classifier for COVID-19 Resistance Evaluation," Data, MDPI, vol. 6(1), pages 1-17, January.
  • Handle: RePEc:gam:jdataj:v:6:y:2021:i:1:p:6-:d:481196
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2306-5729/6/1/6/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2306-5729/6/1/6/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tatiana Petukhova & Davor Ojkic & Beverly McEwen & Rob Deardon & Zvonimir Poljak, 2018. "Assessment of autoregressive integrated moving average (ARIMA), generalized linear autoregressive moving average (GLARMA), and random forest (RF) time series regression models for predicting influenza," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-17, June.
    2. Rendani Mbuvha & Tshilidzi Marwala, 2020. "Bayesian inference of COVID-19 spreading rates in South Africa," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-16, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Congdon, 2022. "A spatio-temporal autoregressive model for monitoring and predicting COVID infection rates," Journal of Geographical Systems, Springer, vol. 24(4), pages 583-610, October.
    2. Hongxin Xue & Yanping Bai & Hongping Hu & Haijian Liang, 2019. "Regional level influenza study based on Twitter and machine learning method," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-23, April.
    3. Zhijuan Song & Xiaocan Jia & Junzhe Bao & Yongli Yang & Huili Zhu & Xuezhong Shi, 2021. "Spatio-Temporal Analysis of Influenza-Like Illness and Prediction of Incidence in High-Risk Regions in the United States from 2011 to 2020," IJERPH, MDPI, vol. 18(13), pages 1-14, July.
    4. Rui Zhang & Hejia Song & Qiulan Chen & Yu Wang & Songwang Wang & Yonghong Li, 2022. "Comparison of ARIMA and LSTM for prediction of hemorrhagic fever at different time scales in China," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-14, January.
    5. Dushmanta Kumar Padhi & Neelamadhab Padhy & Akash Kumar Bhoi & Jana Shafi & Muhammad Fazal Ijaz, 2021. "A Fusion Framework for Forecasting Financial Market Direction Using Enhanced Ensemble Models and Technical Indicators," Mathematics, MDPI, vol. 9(21), pages 1-31, October.
    6. Soudeep Deb & Sougata Deb, 2022. "An ensemble method for early prediction of dengue outbreak," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 84-101, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jdataj:v:6:y:2021:i:1:p:6-:d:481196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.