IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0179364.html
   My bibliography  Save this article

DoEstRare: A statistical test to identify local enrichments in rare genomic variants associated with disease

Author

Listed:
  • Elodie Persyn
  • Matilde Karakachoff
  • Solena Le Scouarnec
  • Camille Le Clézio
  • Dominique Campion
  • French Exome Consortium
  • Jean-Jacques Schott
  • Richard Redon
  • Lise Bellanger
  • Christian Dina

Abstract

Next-generation sequencing technologies made it possible to assay the effect of rare variants on complex diseases. As an extension of the “common disease-common variant” paradigm, rare variant studies are necessary to get a more complete insight into the genetic architecture of human traits. Association studies of these rare variations show new challenges in terms of statistical analysis. Due to their low frequency, rare variants must be tested by groups. This approach is then hindered by the fact that an unknown proportion of the variants could be neutral. The risk level of a rare variation may be determined by its impact but also by its position in the protein sequence. More generally, the molecular mechanisms underlying the disease architecture may involve specific protein domains or inter-genic regulatory regions. While a large variety of methods are optimizing functionality weights for each single marker, few evaluate variant position differences between cases and controls. Here, we propose a test called DoEstRare, which aims to simultaneously detect clusters of disease risk variants and global allele frequency differences in genomic regions. This test estimates, for cases and controls, variant position densities in the genetic region by a kernel method, weighted by a function of allele frequencies. We compared DoEstRare with previously published strategies through simulation studies as well as re-analysis of real datasets. Based on simulation under various scenarios, DoEstRare was the sole to consistently show highest performance, in terms of type I error and power both when variants were clustered or not. DoEstRare was also applied to Brugada syndrome and early-onset Alzheimer’s disease data and provided complementary results to other existing tests. DoEstRare, by integrating variant position information, gives new opportunities to explain disease susceptibility. DoEstRare is implemented in a user-friendly R package.

Suggested Citation

  • Elodie Persyn & Matilde Karakachoff & Solena Le Scouarnec & Camille Le Clézio & Dominique Campion & French Exome Consortium & Jean-Jacques Schott & Richard Redon & Lise Bellanger & Christian Dina, 2017. "DoEstRare: A statistical test to identify local enrichments in rare genomic variants associated with disease," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-20, July.
  • Handle: RePEc:plo:pone00:0179364
    DOI: 10.1371/journal.pone.0179364
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0179364
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0179364&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0179364?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Brendan Maher, 2008. "Personal genomes: The case of the missing heritability," Nature, Nature, vol. 456(7218), pages 18-21, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elodie Persyn & Richard Redon & Lise Bellanger & Christian Dina, 2018. "The impact of a fine-scale population stratification on rare variant association test results," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yumei Yang & Qishan Wang & Qiang Chen & Rongrong Liao & Xiangzhe Zhang & Hongjie Yang & Youmin Zheng & Zhiwu Zhang & Yuchun Pan, 2014. "A New Genotype Imputation Method with Tolerance to High Missing Rate and Rare Variants," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-7, June.
    2. Chung-Feng Kao & Jia-Rou Liu & Hung Hung & Po-Hsiu Kuo, 2015. "A Robust GWSS Method to Simultaneously Detect Rare and Common Variants for Complex Disease," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-14, April.
    3. Dominic Russ & John A Williams & Victor Roth Cardoso & Laura Bravo-Merodio & Samantha C Pendleton & Furqan Aziz & Animesh Acharjee & Georgios V Gkoutos, 2022. "Evaluating the detection ability of a range of epistasis detection methods on simulated data for pure and impure epistatic models," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-19, February.
    4. von Stumm, Sophie & Kandaswamy, Radhika & Maxwell, Jessye, 2023. "Gene-environment interplay in early life cognitive development," Intelligence, Elsevier, vol. 98(C).
    5. Janet Currie, 2011. "Ungleichheiten bei der Geburt: Einige Ursachen und Folgen," Perspektiven der Wirtschaftspolitik, Verein für Socialpolitik, vol. 12(s1), pages 42-65, May.
    6. Kettlewell, Nathan & Tymula, Agnieszka & Yoo, Hong Il, 2023. "The Heritability of Economic Preferences," IZA Discussion Papers 16633, Institute of Labor Economics (IZA).
    7. Shashaank Vattikuti & Juen Guo & Carson C Chow, 2012. "Heritability and Genetic Correlations Explained by Common SNPs for Metabolic Syndrome Traits," PLOS Genetics, Public Library of Science, vol. 8(3), pages 1-8, March.
    8. Bingley, Paul & Cappellari, Lorenzo & Tatsiramos, Konstantinos, 2023. "On the Origins of Socio-Economic Inequalities: Evidence from Twin Families," IZA Discussion Papers 16520, Institute of Labor Economics (IZA).
    9. Gabriel E Hoffman & Benjamin A Logsdon & Jason G Mezey, 2013. "PUMA: A Unified Framework for Penalized Multiple Regression Analysis of GWAS Data," PLOS Computational Biology, Public Library of Science, vol. 9(6), pages 1-19, June.
    10. Patrick Murigu Kamau Njage & Clementine Henri & Pimlapas Leekitcharoenphon & Michel‐Yves Mistou & Rene S. Hendriksen & Tine Hald, 2019. "Machine Learning Methods as a Tool for Predicting Risk of Illness Applying Next‐Generation Sequencing Data," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1397-1413, June.
    11. Yunpeng Wang & Arne B Gjuvsland & Jon Olav Vik & Nicolas P Smith & Peter J Hunter & Stig W Omholt, 2012. "Parameters in Dynamic Models of Complex Traits are Containers of Missing Heritability," PLOS Computational Biology, Public Library of Science, vol. 8(4), pages 1-9, April.
    12. Christian Magnus Page & Sergio E Baranzini & Bjørn-Helge Mevik & Steffan Daniel Bos & Hanne F Harbo & Bettina Kulle Andreassen, 2015. "Assessing the Power of Exome Chips," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-13, October.
    13. Diana Chang & Feng Gao & Andrea Slavney & Li Ma & Yedael Y Waldman & Aaron J Sams & Paul Billing-Ross & Aviv Madar & Richard Spritz & Alon Keinan, 2014. "Accounting for eXentricities: Analysis of the X Chromosome in GWAS Reveals X-Linked Genes Implicated in Autoimmune Diseases," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-31, December.
    14. Hou-Feng Zheng & Jing-Jing Rong & Ming Liu & Fang Han & Xing-Wei Zhang & J Brent Richards & Li Wang, 2015. "Performance of Genotype Imputation for Low Frequency and Rare Variants from the 1000 Genomes," PLOS ONE, Public Library of Science, vol. 10(1), pages 1-10, January.
    15. Lucas Alvizi & Diogo Nani & Luciano Abreu Brito & Gerson Shigeru Kobayashi & Maria Rita Passos-Bueno & Roberto Mayor, 2023. "Neural crest E-cadherin loss drives cleft lip/palate by epigenetic modulation via pro-inflammatory gene–environment interaction," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. Yuanjia Wang & Yin-Hsiu Chen & Qiong Yang, 2012. "Joint Rare Variant Association Test of the Average and Individual Effects for Sequencing Studies," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-13, March.
    17. McEvoy, Brian P. & Visscher, Peter M., 2009. "Genetics of human height," Economics & Human Biology, Elsevier, vol. 7(3), pages 294-306, December.
    18. Zhiqiu Hu & Rong-Cai Yang, 2014. "Marker-Based Estimation of Genetic Parameters in Genomics," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-12, July.
    19. Marcel Elie Nutsua & Annegret Fischer & Almut Nebel & Sylvia Hofmann & Stefan Schreiber & Michael Krawczak & Michael Nothnagel, 2015. "Family-Based Benchmarking of Copy Number Variation Detection Software," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-17, July.
    20. Nagel, Mats, 2020. "Changing perspectives: Towards detailed phenotyping in genetics," Thesis Commons a4nz2_v1, Center for Open Science.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0179364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.