IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0207590.html
   My bibliography  Save this article

GradientScanSurv—An exhaustive association test method for gene expression data with censored survival outcome

Author

Listed:
  • Ming Yi
  • Ruoqing Zhu
  • Robert M Stephens

Abstract

Accurate assessment of the association between continuous variables such as gene expression and survival is a critical aspect of precision medicine. In this report, we provide a review of some of the available survival analysis and validation tools by referencing published studies that have utilized these tools. We have identified pitfalls associated with the assumptions inherent in those applications that have the potential to impact scientific research through their potential bias. In order to overcome these pitfalls, we have developed a novel method that enables the logrank test method to handle continuous variables that comprehensively evaluates survival association with derived aggregate statistics. This is accomplished by exhaustively considering all the cutpoints across the full expression gradient. Direct side-by-side comparisons, global ROC analysis, and evaluation of the ability to capture relevant biological themes based on current understanding of RAS biology all demonstrated that the new method shows better consistency between multiple datasets of the same disease, better reproducibility and robustness, and better detection power to uncover biological relevance within the selected datasets over the available survival analysis methods on univariate gene expression and penalized linear model-based methods.

Suggested Citation

  • Ming Yi & Ruoqing Zhu & Robert M Stephens, 2018. "GradientScanSurv—An exhaustive association test method for gene expression data with censored survival outcome," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-28, December.
  • Handle: RePEc:plo:pone00:0207590
    DOI: 10.1371/journal.pone.0207590
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0207590
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0207590&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0207590?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Saravana M. Dhanasekaran & Terrence R. Barrette & Debashis Ghosh & Rajal Shah & Sooryanarayana Varambally & Kotoku Kurachi & Kenneth J. Pienta & Mark A. Rubin & Arul M. Chinnaiyan, 2001. "Delineation of prognostic biomarkers in prostate cancer," Nature, Nature, vol. 412(6849), pages 822-826, August.
    2. van Wieringen, Wessel N. & Kun, David & Hampel, Regina & Boulesteix, Anne-Laure, 2009. "Survival prediction using gene expression data: A review and comparison," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1590-1603, March.
    3. Wei Zhang & Takayo Ota & Viji Shridhar & Jeremy Chien & Baolin Wu & Rui Kuang, 2013. "Network-based Survival Analysis Reveals Subnetwork Signatures for Predicting Outcomes of Ovarian Cancer Treatment," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-16, March.
    4. Esther Castellano & Miriam Molina-Arcas & Agata Adelajda Krygowska & Philip East & Patricia Warne & Alastair Nicol & Julian Downward, 2016. "RAS signalling through PI3-Kinase controls cell migration via modulation of Reelin expression," Nature Communications, Nature, vol. 7(1), pages 1-13, September.
    5. Balázs Győrffy & Pawel Surowiak & Jan Budczies & András Lánczky, 2013. "Online Survival Analysis Software to Assess the Prognostic Value of Biomarkers Using Transcriptomic Data in Non-Small-Cell Lung Cancer," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-8, December.
    6. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    7. Mandar Deepak Muzumdar & Pan-Yu Chen & Kimberly Judith Dorans & Katherine Minjee Chung & Arjun Bhutkar & Erin Hong & Elisa M. Noll & Martin R. Sprick & Andreas Trumpp & Tyler Jacks, 2017. "Survival of pancreatic cancer cells lacking KRAS function," Nature Communications, Nature, vol. 8(1), pages 1-19, December.
    8. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    9. Adrian Vallejo & Naiara Perurena & Elisabet Guruceaga & Pawel K. Mazur & Susana Martinez-Canarias & Carolina Zandueta & Karmele Valencia & Andrea Arricibita & Dana Gwinn & Leanne C. Sayles & Chen-Hua , 2017. "An integrative approach unveils FOSL1 as an oncogene vulnerability in KRAS-driven lung and pancreatic cancer," Nature Communications, Nature, vol. 8(1), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi Zhang & Yihui Zhang & Yemao Xia, 2024. "Bayesian Feature Extraction for Two-Part Latent Variable Model with Polytomous Manifestations," Mathematics, MDPI, vol. 12(5), pages 1-23, March.
    2. Chakraborty, Sounak, 2009. "Bayesian binary kernel probit model for microarray based cancer classification and gene selection," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4198-4209, October.
    3. Stefanie Hieke & Axel Benner & Richard F Schlenk & Martin Schumacher & Lars Bullinger & Harald Binder, 2016. "Identifying Prognostic SNPs in Clinical Cohorts: Complementing Univariate Analyses by Resampling and Multivariable Modeling," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-18, May.
    4. Armin Rauschenberger & Iuliana Ciocănea-Teodorescu & Marianne A. Jonker & Renée X. Menezes & Mark A. Wiel, 2020. "Sparse classification with paired covariates," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(3), pages 571-588, September.
    5. Julia Gilhodes & Florence Dalenc & Jocelyn Gal & Christophe Zemmour & Eve Leconte & Jean Marie Boher & Thomas Filleron, 2020. "Comparison of Variable Selection Methods for Time-to-Event Data in High-Dimensional Settings," Post-Print hal-02934793, HAL.
    6. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    7. Oxana Babecka Kucharcukova & Jan Bruha, 2016. "Nowcasting the Czech Trade Balance," Working Papers 2016/11, Czech National Bank.
    8. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    9. Hou-Tai Chang & Ping-Huai Wang & Wei-Fang Chen & Chen-Ju Lin, 2022. "Risk Assessment of Early Lung Cancer with LDCT and Health Examinations," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
    10. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    11. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
    12. Wang, Qiao & Zhou, Wei & Cheng, Yonggang & Ma, Gang & Chang, Xiaolin & Miao, Yu & Chen, E, 2018. "Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 120-145.
    13. Dmitriy Drusvyatskiy & Adrian S. Lewis, 2018. "Error Bounds, Quadratic Growth, and Linear Convergence of Proximal Methods," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 919-948, August.
    14. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    15. Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    16. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    17. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    18. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022. "Specification Choices in Quantile Regression for Empirical Macroeconomics," Working Papers 22-25, Federal Reserve Bank of Cleveland.
    19. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    20. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0207590. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.