IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02934793.html
   My bibliography  Save this paper

Comparison of Variable Selection Methods for Time-to-Event Data in High-Dimensional Settings

Author

Listed:
  • Julia Gilhodes

    (ICR - Institut Claudius Regaud)

  • Florence Dalenc

    (ICR - Institut Claudius Regaud)

  • Jocelyn Gal

    (UNICANCER/CAL - Centre de Lutte contre le Cancer Antoine Lacassagne [Nice] - UNICANCER - UniCA - Université Côte d'Azur)

  • Christophe Zemmour

    (IPC - Institut Paoli-Calmettes - Fédération nationale des Centres de lutte contre le Cancer (FNCLCC), SESSTIM - U1252 INSERM - Aix Marseille Univ - UMR 259 IRD - Sciences Economiques et Sociales de la Santé & Traitement de l'Information Médicale - IRD - Institut de Recherche pour le Développement - AMU - Aix Marseille Université - INSERM - Institut National de la Santé et de la Recherche Médicale)

  • Eve Leconte

    (TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

  • Jean Marie Boher

    (IPC - Institut Paoli-Calmettes - Fédération nationale des Centres de lutte contre le Cancer (FNCLCC), SESSTIM - U1252 INSERM - Aix Marseille Univ - UMR 259 IRD - Sciences Economiques et Sociales de la Santé & Traitement de l'Information Médicale - IRD - Institut de Recherche pour le Développement - AMU - Aix Marseille Université - INSERM - Institut National de la Santé et de la Recherche Médicale)

  • Thomas Filleron

    (ICR - Institut Claudius Regaud)

Abstract

Over the last decades, molecular signatures have become increasingly important in oncology and are opening up a new area of personalized medicine. Nevertheless, biological relevance and statistical tools necessary for the development of these signatures have been called into question in the literature. Here, we investigate six typical selection methods for high-dimensional settings and survival endpoints, including LASSO and some of its extensions, component-wise boosting, and random survival forests (RSF). A resampling algorithm based on data splitting was used on nine high-dimensional simulated datasets to assess selection stability on training sets and the intersection between selection methods. Prognostic performances were evaluated on respective validation sets. Finally, one application on a real breast cancer dataset has been proposed. The false discovery rate (FDR) was high for each selection method, and the intersection between lists of predictors was very poor. RSF selects many more variables than the other methods and thus becomes less efficient on validation sets. Due to the complex correlation structure in genomic data, stability in the selection procedure is generally poor for selected predictors, but can be improved with a higher training sample size. In a very high-dimensional setting, we recommend the LASSO-pcvl method since it outperforms other methods by reducing the number of selected genes and minimizing FDR in most scenarios. Nevertheless, this method still gives a high rate of false positives. Further work is thus necessary to propose new methods to overcome this issue where numerous predictors are present. Pluridisciplinary discussion between clinicians and statisticians is necessary to ensure both statistical and biological relevance of the predictors included in molecular signatures.

Suggested Citation

  • Julia Gilhodes & Florence Dalenc & Jocelyn Gal & Christophe Zemmour & Eve Leconte & Jean Marie Boher & Thomas Filleron, 2020. "Comparison of Variable Selection Methods for Time-to-Event Data in High-Dimensional Settings," Post-Print hal-02934793, HAL.
  • Handle: RePEc:hal:journl:hal-02934793
    DOI: 10.1155/2020/6795392
    Note: View the original document on HAL open archive server: https://hal.science/hal-02934793v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-02934793v1/document
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/6795392?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Herbert Pang & Tiejun Tong & Hongyu Zhao, 2009. "Shrinkage-based Diagonal Discriminant Analysis and Its Applications in High-Dimensional Data," Biometrics, The International Biometric Society, vol. 65(4), pages 1021-1029, December.
    2. Hiroaki Kitano, 2002. "Computational systems biology," Nature, Nature, vol. 420(6912), pages 206-210, November.
    3. Mogensen, Ulla B. & Ishwaran, Hemant & Gerds, Thomas A., 2012. "Evaluating Random Forests for Survival Analysis Using Prediction Error Curves," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 50(i11).
    4. van Wieringen, Wessel N. & Kun, David & Hampel, Regina & Boulesteix, Anne-Laure, 2009. "Survival prediction using gene expression data: A review and comparison," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1590-1603, March.
    5. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    6. Ishwaran, Hemant & Kogalur, Udaya B. & Gorodeski, Eiran Z. & Minn, Andy J. & Lauer, Michael S., 2010. "High-Dimensional Variable Selection for Survival Data," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 205-217.
    7. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    8. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Armin Rauschenberger & Iuliana Ciocănea-Teodorescu & Marianne A. Jonker & Renée X. Menezes & Mark A. Wiel, 2020. "Sparse classification with paired covariates," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(3), pages 571-588, September.
    2. Lore Zumeta-Olaskoaga & Maximilian Weigert & Jon Larruskain & Eder Bikandi & Igor Setuain & Josean Lekue & Helmut Küchenhoff & Dae-Jin Lee, 2023. "Prediction of sports injuries in football: a recurrent time-to-event approach using regularized Cox models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(1), pages 101-126, March.
    3. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    4. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    5. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    6. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    7. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    8. Immanuel Bayer & Philip Groth & Sebastian Schneckener, 2013. "Prediction Errors in Learning Drug Response from Gene Expression Data – Influence of Labeling, Sample Size, and Machine Learning Algorithm," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-13, July.
    9. Mostafa Rezaei & Ivor Cribben & Michele Samorani, 2021. "A clustering-based feature selection method for automatically generated relational attributes," Annals of Operations Research, Springer, vol. 303(1), pages 233-263, August.
    10. Gustavo A. Alonso-Silverio & Víctor Francisco-García & Iris P. Guzmán-Guzmán & Elías Ventura-Molina & Antonio Alarcón-Paredes, 2021. "Toward Non-Invasive Estimation of Blood Glucose Concentration: A Comparative Performance," Mathematics, MDPI, vol. 9(20), pages 1-13, October.
    11. Christopher Kath & Florian Ziel, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Papers 1811.08604, arXiv.org.
    12. Karim Barigou & Stéphane Loisel & Yahia Salhi, 2020. "Parsimonious Predictive Mortality Modeling by Regularization and Cross-Validation with and without Covid-Type Effect," Risks, MDPI, vol. 9(1), pages 1-18, December.
    13. Gurgul Henryk & Machno Artur, 2017. "Trade Pattern on Warsaw Stock Exchange and Prediction of Number of Trades," Statistics in Transition New Series, Statistics Poland, vol. 18(1), pages 91-114, March.
    14. Zemin Zheng & Jie Zhang & Yang Li, 2022. "L 0 -Regularized Learning for High-Dimensional Additive Hazards Regression," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2762-2775, September.
    15. Michael Funke & Kadri Männasoo & Helery Tasane, 2023. "Regional Economic Impacts of the Øresund Cross-Border Fixed Link: Cui Bono?," CESifo Working Paper Series 10557, CESifo.
    16. Camila Epprecht & Dominique Guegan & Álvaro Veiga & Joel Correa da Rosa, 2017. "Variable selection and forecasting via automated methods for linear models: LASSO/adaLASSO and Autometrics," Post-Print halshs-00917797, HAL.
    17. Zichen Zhang & Ye Eun Bae & Jonathan R. Bradley & Lang Wu & Chong Wu, 2022. "SUMMIT: An integrative approach for better transcriptomic data imputation improves causal gene identification," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Štefan Lyócsa & Petra Vašaničová & Branka Hadji Misheva & Marko Dávid Vateha, 2022. "Default or profit scoring credit systems? Evidence from European and US peer-to-peer lending markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    19. Peter Bühlmann & Jacopo Mandozzi, 2014. "High-dimensional variable screening and bias in subsequent inference, with an empirical comparison," Computational Statistics, Springer, vol. 29(3), pages 407-430, June.
    20. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Risks, MDPI, vol. 6(2), pages 1-20, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02934793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.