IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003015.html
   My bibliography  Save this article

A Healthy Fear of the Unknown: Perspectives on the Interpretation of Parameter Fits from Computational Models in Neuroscience

Author

Listed:
  • Matthew R Nassar
  • Joshua I Gold

Abstract

Fitting models to behavior is commonly used to infer the latent computational factors responsible for generating behavior. However, the complexity of many behaviors can handicap the interpretation of such models. Here we provide perspectives on problems that can arise when interpreting parameter fits from models that provide incomplete descriptions of behavior. We illustrate these problems by fitting commonly used and neurophysiologically motivated reinforcement-learning models to simulated behavioral data sets from learning tasks. These model fits can pass a host of standard goodness-of-fit tests and other model-selection diagnostics even when the models do not provide a complete description of the behavioral data. We show that such incomplete models can be misleading by yielding biased estimates of the parameters explicitly included in the models. This problem is particularly pernicious when the neglected factors are unknown and therefore not easily identified by model comparisons and similar methods. An obvious conclusion is that a parsimonious description of behavioral data does not necessarily imply an accurate description of the underlying computations. Moreover, general goodness-of-fit measures are not a strong basis to support claims that a particular model can provide a generalized understanding of the computations that govern behavior. To help overcome these challenges, we advocate the design of tasks that provide direct reports of the computational variables of interest. Such direct reports complement model-fitting approaches by providing a more complete, albeit possibly more task-specific, representation of the factors that drive behavior. Computational models then provide a means to connect such task-specific results to a more general algorithmic understanding of the brain.

Suggested Citation

  • Matthew R Nassar & Joshua I Gold, 2013. "A Healthy Fear of the Unknown: Perspectives on the Interpretation of Parameter Fits from Computational Models in Neuroscience," PLOS Computational Biology, Public Library of Science, vol. 9(4), pages 1-6, April.
  • Handle: RePEc:plo:pcbi00:1003015
    DOI: 10.1371/journal.pcbi.1003015
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003015
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003015&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nathaniel D. Daw & John P. O'Doherty & Peter Dayan & Ben Seymour & Raymond J. Dolan, 2006. "Cortical substrates for exploratory decisions in humans," Nature, Nature, vol. 441(7095), pages 876-879, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongping Bao & Ludwig Danwitz & Fabian Dvorak & Sebastian Fehrler & Lars Hornuf & Hsuan Yu Lin & Bettina von Helversen, 2022. "Similarity and Consistency in Algorithm-Guided Exploration," CESifo Working Paper Series 10188, CESifo.
    2. Peter S. Riefer & Bradley C. Love, 2015. "Unfazed by Both the Bull and Bear: Strategic Exploration in Dynamic Environments," Games, MDPI, vol. 6(3), pages 1-11, August.
    3. Makoto Naruse & Eiji Yamamoto & Takashi Nakao & Takuma Akimoto & Hayato Saigo & Kazuya Okamura & Izumi Ojima & Georg Northoff & Hirokazu Hori, 2018. "Why is the environment important for decision making? Local reservoir model for choice-based learning," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-17, October.
    4. Christina Fang & Daniel Levinthal, 2009. "Near-Term Liability of Exploitation: Exploration and Exploitation in Multistage Problems," Organization Science, INFORMS, vol. 20(3), pages 538-551, June.
    5. Hu, Yingyao & Kayaba, Yutaka & Shum, Matthew, 2013. "Nonparametric learning rules from bandit experiments: The eyes have it!," Games and Economic Behavior, Elsevier, vol. 81(C), pages 215-231.
    6. Elise Payzan-LeNestour & Peter Bossaerts, 2011. "Risk, Unexpected Uncertainty, and Estimation Uncertainty: Bayesian Learning in Unstable Settings," PLOS Computational Biology, Public Library of Science, vol. 7(1), pages 1-14, January.
    7. Ian Krajbich & Todd Hare & Björn Bartling & Yosuke Morishima & Ernst Fehr, 2015. "A Common Mechanism Underlying Food Choice and Social Decisions," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-24, October.
    8. Maël Lebreton & Karin Bacily & Stefano Palminteri & Jan B Engelmann, 2019. "Contextual influence on confidence judgments in human reinforcement learning," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-27, April.
    9. repec:cup:judgdm:v:17:y:2022:i:4:p:691-719 is not listed on IDEAS
    10. Ahmed H. Alsharif & Nor Zafir Md Salleh & Rohaizat Baharun & Alharthi Rami Hashem E & Aida Azlina Mansor & Javed Ali & Alhamzah F. Abbas, 2021. "Neuroimaging Techniques in Advertising Research: Main Applications, Development, and Brain Regions and Processes," Sustainability, MDPI, vol. 13(11), pages 1-25, June.
    11. Aaron J Gruber & Rifat J Hussain & Patricio O'Donnell, 2009. "The Nucleus Accumbens: A Switchboard for Goal-Directed Behaviors," PLOS ONE, Public Library of Science, vol. 4(4), pages 1-10, April.
    12. repec:cup:judgdm:v:15:y:2020:i:5:p:823-850 is not listed on IDEAS
    13. Phanish Puranam & Murali Swamy, 2016. "How Initial Representations Shape Coupled Learning Processes," Organization Science, INFORMS, vol. 27(2), pages 323-335, April.
    14. Daniella Laureiro-Martinez, 2014. "Cognitive Control Capabilities, Routinization Propensity, and Decision-Making Performance," Organization Science, INFORMS, vol. 25(4), pages 1111-1133, August.
    15. Anna P. Giron & Simon Ciranka & Eric Schulz & Wouter Bos & Azzurra Ruggeri & Björn Meder & Charley M. Wu, 2023. "Developmental changes in exploration resemble stochastic optimization," Nature Human Behaviour, Nature, vol. 7(11), pages 1955-1967, November.
    16. Jean-Claude Dreher & Etienne Koechlin & Michael Tierney & Jordan Grafman, 2008. "Damage to the Fronto-Polar Cortex Is Associated with Impaired Multitasking," PLOS ONE, Public Library of Science, vol. 3(9), pages 1-9, September.
    17. Makoto Naruse & Song-Ju Kim & Masashi Aono & Martin Berthel & Aurélien Drezet & Serge Huant & Hirokazu Hori, 2018. "Category Theoretic Analysis of Photon-Based Decision Making," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(05), pages 1305-1333, September.
    18. repec:jdm:journl:v:17:y:2022:i:4:p:691-719 is not listed on IDEAS
    19. Solnais, Céline & Andreu-Perez, Javier & Sánchez-Fernández, Juan & Andréu-Abela, Jaime, 2013. "The contribution of neuroscience to consumer research: A conceptual framework and empirical review," Journal of Economic Psychology, Elsevier, vol. 36(C), pages 68-81.
    20. Yilmaz Kocer, 2010. "Endogenous Learning with Bounded Memory," Working Papers 1290, Princeton University, Department of Economics, Econometric Research Program..
    21. Chen Wang & Yanliu Huang & Vicki MorwitzEditor & Stijn van OsselaerAssociate Editor, 2018. "“I Want to Know the Answer! Give Me Fish ’n’ Chips!”: The Impact of Curiosity on Indulgent Choice," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 44(5), pages 1052-1067.
    22. Crystal Reeck & Xue Guo & Angelika Dimoka & Paul A. Pavlou, 2024. "Uncovering the Neural Processes of Privacy: A Neurally Informed Behavioral Intervention to Protect Information Privacy," Information Systems Research, INFORMS, vol. 35(2), pages 727-746, June.
    23. Benjamin D. Horne & Natalie M. Rice & Catherine A. Luther & Damian J. Ruck & Joshua Borycz & Suzie L. Allard & Michael Fitzgerald & Oleg Manaev & Brandon C. Prins & Maureen Taylor & R. Alexander Bentl, 2023. "Generational effects of culture and digital media in former Soviet Republics," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.