IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0201520.html
   My bibliography  Save this article

Within-quadrant position and orientation specificity after extensive orientation discrimination learning is related to performance gains during late learning

Author

Listed:
  • Gesa Lange
  • Eric Lowet
  • Mark J Roberts
  • Peter De Weerd

Abstract

The last decade has seen the emergence of new views about the mechanisms underlying specificity (or, conversely, generalization) of visual skill learning. Here, we trained participants at orientation discrimination paradigm at a peripheral position to induce position and orientation specificity and to test its underlying mechanisms. Specifically, we aimed to test whether the within-quadrant spatial gradient of generalization is determined by cortical magnification, which would show that retinotopic plasticity contributes to learning and specificity. Additionally, we aimed to test whether late parts of the learning relate differently to specificity compared to early parts. This is relevant in the context of double training papers, which suggest that rule-based mechanisms of specificity in fast, early learning also would apply to late, slower learning. Our data showed partial but significant position and orientation specificity within quadrants. Interestingly, specificity was greatest for those participants who had continued to show threshold decreases during the last five sessions of training (late, asymptotic learning). Performance gains during early learning were less related to specificity. A trend for skill to spread over larger distances towards periphery than towards central vision suggested contributions to transfer of early visual areas showing cortical magnification of central vision. Control experiments however did not support this hypothesis. In summary, our study demonstrates significant specificity after extensive perceptual learning, and indicates that asymptotic learning recruits specific mechanisms that promote specificity, and that may not be recruited yet in early parts of the learning. The contributions of different mechanisms to early and late learning suggests that following these different learning periods, generalization relies on different principles and is subjected to different limits.

Suggested Citation

  • Gesa Lange & Eric Lowet & Mark J Roberts & Peter De Weerd, 2018. "Within-quadrant position and orientation specificity after extensive orientation discrimination learning is related to performance gains during late learning," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-37, September.
  • Handle: RePEc:plo:pone00:0201520
    DOI: 10.1371/journal.pone.0201520
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0201520
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0201520&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0201520?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Merav Ahissar & Shaul Hochstein, 1997. "Task difficulty and the specificity of perceptual learning," Nature, Nature, vol. 387(6631), pages 401-406, May.
    2. Aniek Schoups & Rufin Vogels & Ning Qian & Guy Orban, 2001. "Practising orientation identification improves orientation coding in V1 neurons," Nature, Nature, vol. 412(6846), pages 549-553, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefanie Duyck & Hans Op de Beeck, 2019. "An investigation of far and near transfer in a gamified visual learning paradigm," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-23, December.
    2. Katharine Molloy & David R Moore & Ediz Sohoglu & Sygal Amitay, 2012. "Less Is More: Latent Learning Is Maximized by Shorter Training Sessions in Auditory Perceptual Learning," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-13, May.
    3. Susana T L Chung & Roger W Li & Dennis M Levi, 2012. "Learning to Identify Near-Acuity Letters, either with or without Flankers, Results in Improved Letter Size and Spacing Limits in Adults with Amblyopia," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-11, April.
    4. Ari S. Benjamin & Ling-Qi Zhang & Cheng Qiu & Alan A. Stocker & Konrad P. Kording, 2022. "Efficient neural codes naturally emerge through gradient descent learning," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Sygal Amitay & Lorna Halliday & Jenny Taylor & Ediz Sohoglu & David R Moore, 2010. "Motivation and Intelligence Drive Auditory Perceptual Learning," PLOS ONE, Public Library of Science, vol. 5(3), pages 1-8, March.
    6. Jeyadarshan Jeyabalaratnam & Vishal Bharmauria & Lyes Bachatene & Sarah Cattan & Annie Angers & Stéphane Molotchnikoff, 2013. "Adaptation Shifts Preferred Orientation of Tuning Curve in the Mouse Visual Cortex," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-8, May.
    7. Jiashu Liu & Yingtian He & Andreanne Lavoie & Guy Bouvier & Bao-hua Liu, 2023. "A direction-selective cortico-brainstem pathway adaptively modulates innate behaviors," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    8. Jacqueline M Fulvio & C Shawn Green & Paul R Schrater, 2014. "Task-Specific Response Strategy Selection on the Basis of Recent Training Experience," PLOS Computational Biology, Public Library of Science, vol. 10(1), pages 1-16, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0201520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.