IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0198846.html
   My bibliography  Save this article

Time-varying MVAR algorithms for directed connectivity analysis: Critical comparison in simulations and benchmark EEG data

Author

Listed:
  • Mattia F Pagnotta
  • Gijs Plomp

Abstract

Human brain function depends on directed interactions between multiple areas that evolve in the subsecond range. Time-varying multivariate autoregressive (tvMVAR) modeling has been proposed as a way to help quantify directed functional connectivity strengths with high temporal resolution. While several tvMVAR approaches are currently available, there is a lack of unbiased systematic comparative analyses of their performance and of their sensitivity to parameter choices. Here, we critically compare four recursive tvMVAR algorithms and assess their performance while systematically varying adaptation coefficients, model order, and signal sampling rate. We also compared two ways of exploiting repeated observations: single-trial modeling followed by averaging, and multi-trial modeling where one tvMVAR model is fitted across all trials. Results from numerical simulations and from benchmark EEG recordings showed that: i) across a broad range of model orders all algorithms correctly reproduced patterns of interactions; ii) signal downsampling degraded connectivity estimation accuracy for most algorithms, although in some cases downsampling was shown to reduce variability in the estimates by lowering the number of parameters in the model; iii) single-trial modeling followed by averaging showed optimal performance with larger adaptation coefficients than previously suggested, and showed slower adaptation speeds than multi-trial modeling. Overall, our findings identify strengths and weaknesses of existing tvMVAR approaches and provide practical recommendations for their application to modeling dynamic directed interactions from electrophysiological signals.

Suggested Citation

  • Mattia F Pagnotta & Gijs Plomp, 2018. "Time-varying MVAR algorithms for directed connectivity analysis: Critical comparison in simulations and benchmark EEG data," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-27, June.
  • Handle: RePEc:plo:pone00:0198846
    DOI: 10.1371/journal.pone.0198846
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0198846
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0198846&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0198846?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiaotong Wen & Govindan Rangarajan & Mingzhou Ding, 2013. "Is Granger Causality a Viable Technique for Analyzing fMRI Data?," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-11, July.
    2. Hirotugu Akaike, 1969. "Fitting autoregressive models for prediction," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 21(1), pages 243-247, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Campos, Eduardo Lima & Cysne, Rubens Penha, 2017. "A time-varying fiscal reaction function for Brazil," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 795, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    2. Rodrigo Hakim das Neves, 2020. "Bitcoin pricing: impact of attractiveness variables," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-18, December.
    3. Asghar, Zahid & Abid, Irum, 2007. "Performance of lag length selection criteria in three different situations," MPRA Paper 40042, University Library of Munich, Germany.
    4. Kathryn M. Dominguez, 1991. "Do Exchange Auctions Work? An Examination of the Bolivian Experience," NBER Working Papers 3683, National Bureau of Economic Research, Inc.
    5. Bin Liu & Weifeng Chen & Bo Li & Xiuping Liu, 2022. "Neural Subspace Learning for Surface Defect Detection," Mathematics, MDPI, vol. 10(22), pages 1-16, November.
    6. Jacint Balaguer & Manuel Cantavella-Jorda, 2004. "Structural change in exports and economic growth: cointegration and causality analysis for Spain (1961-2000)," Applied Economics, Taylor & Francis Journals, vol. 36(5), pages 473-477.
    7. Muhammad Farooq Arby & Amjad Ali, 2017. "Threshold Inflation in Pakistan," SBP Research Bulletin, State Bank of Pakistan, Research Department, vol. 13, pages 1-19.
    8. Ramona Dumitriu & Razvan Stefanescu, 2015. "The Relationship Between Romanian Exports And Economic Growth After The Adhesion To European Union," Risk in Contemporary Economy, "Dunarea de Jos" University of Galati, Faculty of Economics and Business Administration, pages 17-26.
    9. David F. Hendry & Hans-Martin Krolzig, 2005. "The Properties of Automatic "GETS" Modelling," Economic Journal, Royal Economic Society, vol. 115(502), pages C32-C61, 03.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0198846. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.