An EGR performance evaluation and decision-making approach based on grey theory and grey entropy analysis
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0191626
Download full text from publisher
References listed on IDEAS
- Asad, Usman & Zheng, Ming, 2014. "Exhaust gas recirculation for advanced diesel combustion cycles," Applied Energy, Elsevier, vol. 123(C), pages 242-252.
- Jafarmadar, Samad & Nemati, Peyman, 2017. "Analysis of Exhaust Gas Recirculation (EGR) effects on exergy terms in an engine operating with diesel oil and hydrogen," Energy, Elsevier, vol. 126(C), pages 746-755.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Syed Mithun Ali & Amanat Ur Rahman & Golam Kabir & Sanjoy Kumar Paul, 2024. "Artificial Intelligence Approach to Predict Supply Chain Performance: Implications for Sustainability," Sustainability, MDPI, vol. 16(6), pages 1-31, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Khoa, Nguyen Xuan & Lim, Ocktaeck, 2019. "The effects of combustion duration on residual gas, effective release energy, engine power and engine emissions characteristics of the motorcycle engine," Applied Energy, Elsevier, vol. 248(C), pages 54-63.
- Zhaojie Shen & Wenzheng Cui & Xiaodong Ju & Zhongchang Liu & Shaohua Wu & Jianguo Yang, 2018. "Numerical Investigation on Effects of Assigned EGR Stratification on a Heavy Duty Diesel Engine with Two-Stage Fuel Injection," Energies, MDPI, vol. 11(3), pages 1-14, February.
- Bahman Najafi & Sina Faizollahzadeh Ardabili & Amir Mosavi & Shahaboddin Shamshirband & Timon Rabczuk, 2018. "An Intelligent Artificial Neural Network-Response Surface Methodology Method for Accessing the Optimum Biodiesel and Diesel Fuel Blending Conditions in a Diesel Engine from the Viewpoint of Exergy and," Energies, MDPI, vol. 11(4), pages 1-18, April.
- Andwari, Amin Mahmoudzadeh & Aziz, Azhar Abdul & Said, Mohd Farid Muhamad & Latiff, Zulkarnain Abdul, 2014. "Experimental investigation of the influence of internal and external EGR on the combustion characteristics of a controlled auto-ignition two-stroke cycle engine," Applied Energy, Elsevier, vol. 134(C), pages 1-10.
- Yuan, Zhipeng & Fu, Jianqin & Liu, Qi & Ma, Yinjie & Zhan, Zhangsong, 2018. "Quantitative study on influence factors of power performance of variable valve timing (VVT) engines and correction of its governing equation," Energy, Elsevier, vol. 157(C), pages 314-326.
- Asad, Usman & Kumar, Raj & Zheng, Ming & Tjong, Jimi, 2015. "Ethanol-fueled low temperature combustion: A pathway to clean and efficient diesel engine cycles," Applied Energy, Elsevier, vol. 157(C), pages 838-850.
- Park, Jungsoo & Song, Soonho & Lee, Kyo Seung, 2015. "Numerical investigation of a dual-loop EGR split strategy using a split index and multi-objective Pareto optimization," Applied Energy, Elsevier, vol. 142(C), pages 21-32.
- Zamboni, Giorgio & Moggia, Simone & Capobianco, Massimo, 2016. "Hybrid EGR and turbocharging systems control for low NOX and fuel consumption in an automotive diesel engine," Applied Energy, Elsevier, vol. 165(C), pages 839-848.
- Iqbal, Rashid & Liu, Yancheng & Zeng, Yuji & Zhang, Qinjin & Zeeshan, Muhammad, 2024. "Comparative study based on techno-economics analysis of different shipboard microgrid systems comprising PV/wind/fuel cell/battery/diesel generator with two battery technologies: A step toward green m," Renewable Energy, Elsevier, vol. 221(C).
- Yuan, Yupeng & Wang, Jixiang & Yan, Xinping & Shen, Boyang & Long, Teng, 2020. "A review of multi-energy hybrid power system for ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
- Jerzy Cisek & Szymon Leśniak & Andrzej Borowski & Włodzimierz Przybylski & Vitaliy Mokretskyy, 2022. "Visualisation and Thermovision of Fuel Combustion Affecting Heat Release to Reduce NO x and PM Diesel Engine Emissions," Energies, MDPI, vol. 15(13), pages 1-32, July.
- Nguyen Xuan Khoa & Ocktaeck Lim, 2022. "A Review of the External and Internal Residual Exhaust Gas in the Internal Combustion Engine," Energies, MDPI, vol. 15(3), pages 1-21, February.
- M Krishnamoorthi & R Malayalamurthi, 2018. "Effect of exhaust gas recirculation and charge inlet temperature on performance, combustion, and emission characteristics of diesel engine with bael oil blends," Energy & Environment, , vol. 29(3), pages 372-391, May.
- Thangaraja, J. & Kannan, C., 2016. "Effect of exhaust gas recirculation on advanced diesel combustion and alternate fuels - A review," Applied Energy, Elsevier, vol. 180(C), pages 169-184.
- Rakopoulos, Dimitrios C. & Rakopoulos, Constantine D. & Kosmadakis, George M. & Giakoumis, Evangelos G., 2020. "Exergy assessment of combustion and EGR and load effects in DI diesel engine using comprehensive two-zone modeling," Energy, Elsevier, vol. 202(C).
- Giorgio Zamboni, 2018. "A Study on Combustion Parameters in an Automotive Turbocharged Diesel Engine," Energies, MDPI, vol. 11(10), pages 1-21, September.
- Jerzy Cisek & Szymon Lesniak & Winicjusz Stanik & Włodzimierz Przybylski, 2021. "The Synergy of Two Biofuel Additives on Combustion Process to Simultaneously Reduce NOx and PM Emissions," Energies, MDPI, vol. 14(10), pages 1-31, May.
- Pedrozo, Vinícius B. & May, Ian & Zhao, Hua, 2017. "Exploring the mid-load potential of ethanol-diesel dual-fuel combustion with and without EGR," Applied Energy, Elsevier, vol. 193(C), pages 263-275.
- Hoang, Anh Tuan & Pandey, Ashok & Martinez De Osés, Francisco Javier & Chen, Wei-Hsin & Said, Zafar & Ng, Kim Hoong & Ağbulut, Ümit & Tarełko, Wiesław & Ölçer, Aykut I. & Nguyen, Xuan Phuong, 2023. "Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
- Giorgio Zamboni & Simone Moggia & Massimo Capobianco, 2017. "Effects of a Dual-Loop Exhaust Gas Recirculation System and Variable Nozzle Turbine Control on the Operating Parameters of an Automotive Diesel Engine," Energies, MDPI, vol. 10(1), pages 1-18, January.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0191626. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.