IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0191003.html
   My bibliography  Save this article

First typology of cacao (Theobroma cacao L.) systems in Colombian Amazonia, based on tree species richness, canopy structure and light availability

Author

Listed:
  • Juan Carlos Suárez Salazar
  • Marie Ange Ngo Bieng
  • Luz Marina Melgarejo
  • Julio A Di Rienzo
  • Fernando Casanoves

Abstract

Aim and background: We present a typology of cacao agroforest systems in Colombian Amazonia. These systems had yet to be described in the literature, especially their potential in terms of biodiversity conservation. The systems studied are located in a post-conflict area, and a deforestation front in Colombian Amazonia. Cacao cropping systems are of key importance in Colombia: cacao plays a prime role in post conflict resolution, as cacao is a legal crop to replace illegal crops; cacao agroforests are expected to be a sustainable practice, promoting forest-friendly land use. Material and methods: We worked in 50 x 2000 m2 agroforest plots, in Colombian Amazonia. A cluster analysis was used to build a typology based on 28 variables characterised in each plot, and related to diversity, composition, spatial structure and light availability for the cacao trees. We included variables related to light availability to evaluate the amount of transmitted radiation to the cacao trees in each type, and its suitability for cacao ecophysiological development. Main results: We identified 4 types of cacao agroforests based on differences concerning tree species diversity and the impact of canopy spatial structure on light availability for the cacao trees in the understorey. We found 127 tree species in the dataset, with some exclusive species in each type. We also found that 3 out of the 4 types identified displayed an erosion of tree species diversity. This reduction in shade tree species may have been linked to the desire to reduce shade, but we also found that all the types described were compatible with good ecophysiological development of the cacao trees. Main conclusions and prospects: Cacao agroforest systems may actually be achieving biodiversity conservation goals in Colombian Amazonia. One challenging prospect will be to monitor and encourage the conservation of tree species diversity in cacao agroforest systems during the development of these cropping systems, as a form of forest-friendly management enhancing sustainable peace building in Colombia.

Suggested Citation

  • Juan Carlos Suárez Salazar & Marie Ange Ngo Bieng & Luz Marina Melgarejo & Julio A Di Rienzo & Fernando Casanoves, 2018. "First typology of cacao (Theobroma cacao L.) systems in Colombian Amazonia, based on tree species richness, canopy structure and light availability," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-20, February.
  • Handle: RePEc:plo:pone00:0191003
    DOI: 10.1371/journal.pone.0191003
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0191003
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0191003&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0191003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zuidema, Pieter A. & Leffelaar, Peter A. & Gerritsma, Wouter & Mommer, Liesje & Anten, Niels P.R., 2005. "A physiological production model for cocoa (Theobroma cacao): model presentation, validation and application," Agricultural Systems, Elsevier, vol. 84(2), pages 195-225, May.
    2. Dray, Stéphane & Dufour, Anne-Béatrice, 2007. "The ade4 Package: Implementing the Duality Diagram for Ecologists," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 22(i04).
    3. Jezeer, Rosalien E. & Verweij, Pita A. & Santos, Maria J. & Boot, René G.A., 2017. "Shaded Coffee and Cocoa – Double Dividend for Biodiversity and Small-scale Farmers," Ecological Economics, Elsevier, vol. 140(C), pages 136-145.
    4. Lê, Sébastien & Josse, Julie & Husson, François, 2008. "FactoMineR: An R Package for Multivariate Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 25(i01).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marthe Montcho & Elie Antoine Padonou & Marlise Montcho & Meshack Nzesei Mutua & Brice Sinsin, 2022. "Perception and adaptation strategies of dairy farmers towards climate variability and change in West Africa," Climatic Change, Springer, vol. 170(3), pages 1-21, February.
    2. Pointurier, Olivia & Moreau, Delphine & Pagès, Loïc & Caneill, Jacques & Colbach, Nathalie, 2021. "Individual-based 3D modelling of root systems in heterogeneous plant canopies at the multiannual scale. Case study with a weed dynamics model," Ecological Modelling, Elsevier, vol. 440(C).
    3. Beaton, Derek & Chin Fatt, Cherise R. & Abdi, Hervé, 2014. "An ExPosition of multivariate analysis with the singular value decomposition in R," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 176-189.
    4. Karin Kauer & Sandra Pärnpuu & Liina Talgre & Viacheslav Eremeev & Anne Luik, 2021. "Soil Particulate and Mineral-Associated Organic Matter Increases in Organic Farming under Cover Cropping and Manure Addition," Agriculture, MDPI, vol. 11(9), pages 1-23, September.
    5. Surun, Clément & Drechsler, Martin, 2018. "Effectiveness of Tradable Permits for the Conservation of Metacommunities With Two Competing Species," Ecological Economics, Elsevier, vol. 147(C), pages 189-196.
    6. Jan Kluge & Sarah Lappöhn & Kerstin Plank, 2023. "Predictors of TFP growth in European countries," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 50(1), pages 109-140, February.
    7. Navarro-Miró, D. & Iocola, I. & Persiani, A. & Blanco-Moreno, J.M. & Kristensen, H. Lakkenborg & Hefner, M. & Tamm, K. & Bender, I. & Védie, H. & Willekens, K. & Diacono, M. & Montemurro, F. & Sans, F, 2019. "Energy flows in European organic vegetable systems: Effects of the introduction and management of agroecological service crops," Energy, Elsevier, vol. 188(C).
    8. Wenzel Kröber & Martin Böhnke & Erik Welk & Christian Wirth & Helge Bruelheide, 2012. "Leaf Trait-Environment Relationships in a Subtropical Broadleaved Forest in South-East China," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-11, April.
    9. Alexander Platzer & Thomas Nussbaumer & Thomas Karonitsch & Josef S Smolen & Daniel Aletaha, 2019. "Analysis of gene expression in rheumatoid arthritis and related conditions offers insights into sex-bias, gene biotypes and co-expression patterns," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-23, July.
    10. Baccar, Mariem & Raynal, Hélène & Sekhar, Muddu & Bergez, Jacques-Eric & Willaume, Magali & Casel, Pierre & Giriraj, P. & Murthy, Sanjeeva & Ruiz, Laurent, 2023. "Dynamics of crop category choices reveal strategies and tactics used by smallholder farmers in India to cope with unreliable water availability," Agricultural Systems, Elsevier, vol. 211(C).
    11. Aditi Sahu & Kivanc Kose & Lukas Kraehenbuehl & Candice Byers & Aliya Holland & Teguru Tembo & Anthony Santella & Anabel Alfonso & Madison Li & Miguel Cordova & Melissa Gill & Christi Fox & Salvador G, 2022. "In vivo tumor immune microenvironment phenotypes correlate with inflammation and vasculature to predict immunotherapy response," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    12. Pengfei Song & Wen Qin & YanGan Huang & Lei Wang & Zhenyuan Cai & Tongzuo Zhang, 2020. "Grazing Management Influences Gut Microbial Diversity of Livestock in the Same Area," Sustainability, MDPI, vol. 12(10), pages 1-12, May.
    13. la Grange, Anthony & le Roux, Niël & Gardner-Lubbe, Sugnet, 2009. "BiplotGUI: Interactive Biplots in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 30(i12).
    14. Joy R. Petway & Yu-Pin Lin & Rainer F. Wunderlich, 2019. "Analyzing Opinions on Sustainable Agriculture: Toward Increasing Farmer Knowledge of Organic Practices in Taiwan-Yuanli Township," Sustainability, MDPI, vol. 11(14), pages 1-27, July.
    15. Abdulai, Issaka & Hoffmann, Munir P. & Jassogne, Laurence & Asare, Richard & Graefe, Sophie & Tao, Hsiao-Hang & Muilerman, Sander & Vaast, Philippe & Van Asten, Piet & Läderach, Peter & Rötter, Reimun, 2020. "Variations in yield gaps of smallholder cocoa systems and the main determining factors along a climate gradient in Ghana," Agricultural Systems, Elsevier, vol. 181(C).
    16. Jonas Eberle & Renier Myburgh & Dirk Ahrens, 2014. "The Evolution of Morphospace in Phytophagous Scarab Chafers: No Competition - No Divergence?," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-16, May.
    17. Liesbeth François & Katrien Wijnrocx & Frédéric G Colinet & Nicolas Gengler & Bettine Hulsegge & Jack J Windig & Nadine Buys & Steven Janssens, 2017. "Genomics of a revived breed: Case study of the Belgian campine cattle," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-14, April.
    18. Pabitra Joshi & Guriqbal Singh Dhillon & Yaotian Gao & Amandeep Kaur & Justin Wheeler & Jianli Chen, 2024. "An Optimal Model to Improve Genomic Prediction for Protein Content and Test Weight in a Diverse Spring Wheat Panel," Agriculture, MDPI, vol. 14(3), pages 1-16, February.
    19. Nichiforel, Liviu & Keary, Kevin & Deuffic, Philippe & Weiss, Gerhard & Thorsen, Bo Jellesmark & Winkel, Georg & Avdibegović, Mersudin & Dobšinská, Zuzana & Feliciano, Diana & Gatto, Paola & Gorriz Mi, 2018. "How private are Europe’s private forests? A comparative property rights analysis," Land Use Policy, Elsevier, vol. 76(C), pages 535-552.
    20. Roopam Shukla & Ankit Agarwal & Kamna Sachdeva & Juergen Kurths & P. K. Joshi, 2019. "Climate change perception: an analysis of climate change and risk perceptions among farmer types of Indian Western Himalayas," Climatic Change, Springer, vol. 152(1), pages 103-119, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0191003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.