IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v72y2014icp176-189.html
   My bibliography  Save this article

An ExPosition of multivariate analysis with the singular value decomposition in R

Author

Listed:
  • Beaton, Derek
  • Chin Fatt, Cherise R.
  • Abdi, Hervé

Abstract

ExPosition is a new comprehensive R package providing crisp graphics and implementing multivariate analysis methods based on the singular value decomposition (svd). The core techniques implemented in ExPosition are: principal components analysis, (metric) multidimensional scaling, correspondence analysis, and several of their recent extensions such as barycentric discriminant analyses (e.g., discriminant correspondence analysis), multi-table analyses (e.g.,multiple factor analysis, Statis, and distatis), and non-parametric resampling techniques (e.g., permutation and bootstrap). Several examples highlight the major differences between ExPosition and similar packages. Finally, the future directions of ExPosition are discussed.

Suggested Citation

  • Beaton, Derek & Chin Fatt, Cherise R. & Abdi, Hervé, 2014. "An ExPosition of multivariate analysis with the singular value decomposition in R," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 176-189.
  • Handle: RePEc:eee:csdana:v:72:y:2014:i:c:p:176-189
    DOI: 10.1016/j.csda.2013.11.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947313004441
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2013.11.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. O. Hill, 1974. "Correspondence Analysis: A Neglected Multivariate Method," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 23(3), pages 340-354, November.
    2. Gomez, Juan Carlos & Moens, Marie-Francine, 2012. "PCA document reconstruction for email classification," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 741-751.
    3. Takane, Yoshio & Yanai, Haruo & Hwang, Heungsun, 2006. "An improved method for generalized constrained canonical correlation analysis," Computational Statistics & Data Analysis, Elsevier, vol. 50(1), pages 221-241, January.
    4. Liang, Faming, 2007. "Use of SVD-based probit transformation in clustering gene expression profiles," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6355-6366, August.
    5. Lê, Sébastien & Josse, Julie & Husson, François, 2008. "FactoMineR: An R Package for Multivariate Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 25(i01).
    6. Peres-Neto, Pedro R. & Jackson, Donald A. & Somers, Keith M., 2005. "How many principal components? stopping rules for determining the number of non-trivial axes revisited," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 974-997, June.
    7. Nenadic, Oleg & Greenacre, Michael, 2007. "Correspondence Analysis in R, with Two- and Three-dimensional Graphics: The ca Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 20(i03).
    8. Dray, Stéphane & Dufour, Anne-Béatrice, 2007. "The ade4 Package: Implementing the Duality Diagram for Ecologists," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 22(i04).
    9. Tenenhaus, Michel & Vinzi, Vincenzo Esposito & Chatelin, Yves-Marie & Lauro, Carlo, 2005. "PLS path modeling," Computational Statistics & Data Analysis, Elsevier, vol. 48(1), pages 159-205, January.
    10. Michael Greenacre, 2008. "Correspondence analysis of raw data," Economics Working Papers 1112, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2009.
    11. Dray, Stephane, 2008. "On the number of principal components: A test of dimensionality based on measurements of similarity between matrices," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 2228-2237, January.
    12. Lavit, Christine & Escoufier, Yves & Sabatier, Robert & Traissac, Pierre, 1994. "The ACT (STATIS method)," Computational Statistics & Data Analysis, Elsevier, vol. 18(1), pages 97-119, August.
    13. Tuncer, Yalcin & Tanik, Murat M. & Allison, David B., 2008. "An overview of statistical decomposition techniques applied to complex systems," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2292-2310, January.
    14. Ledyard Tucker, 1958. "An inter-battery method of factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 23(2), pages 111-136, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. McDonough, Ian M. & Byrd, DeAnnah R. & Choi, Shinae L., 2023. "Resilience resources may buffer some middle-aged and older Black Americans from memory decline despite experiencing discrimination," Social Science & Medicine, Elsevier, vol. 316(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Greenacre, 2012. "Fuzzy coding in constrained ordinations," Economics Working Papers 1325, Department of Economics and Business, Universitat Pompeu Fabra.
    2. Joy R. Petway & Yu-Pin Lin & Rainer F. Wunderlich, 2019. "Analyzing Opinions on Sustainable Agriculture: Toward Increasing Farmer Knowledge of Organic Practices in Taiwan-Yuanli Township," Sustainability, MDPI, vol. 11(14), pages 1-27, July.
    3. Jonas Eberle & Renier Myburgh & Dirk Ahrens, 2014. "The Evolution of Morphospace in Phytophagous Scarab Chafers: No Competition - No Divergence?," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-16, May.
    4. Pietro Amenta & Antonio Lucadamo & Antonello D’Ambra, 2021. "Restricted Common Component and Specific Weight Analysis: A Constrained Explorative Approach for the Customer Satisfaction Evaluation," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 156(2), pages 409-427, August.
    5. Tenenhaus, Arthur & Philippe, Cathy & Frouin, Vincent, 2015. "Kernel Generalized Canonical Correlation Analysis," Computational Statistics & Data Analysis, Elsevier, vol. 90(C), pages 114-131.
    6. Greenacre, Michael, 2009. "Power transformations in correspondence analysis," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3107-3116, June.
    7. Chao Wu & Xiaofang Guo & Jun Zhao & Quan Lv & Hongbin Li & Edward B. McNeil & Virasakdi Chongsuvivatwong & Hongning Zhou, 2017. "Behaviors Related to Mosquito-Borne Diseases among Different Ethnic Minority Groups along the China-Laos Border Areas," IJERPH, MDPI, vol. 14(10), pages 1-11, October.
    8. Michael Greenacre, 2006. "Tying up the loose ends in simple correspondence analysis," Economics Working Papers 940, Department of Economics and Business, Universitat Pompeu Fabra.
    9. Michel Tenenhaus & Arthur Tenenhaus & Patrick J. F. Groenen, 2017. "Regularized Generalized Canonical Correlation Analysis: A Framework for Sequential Multiblock Component Methods," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 737-777, September.
    10. Jean-Pierre Rossi & Maxime Nardin & Martin Godefroid & Manuela Ruiz-Diaz & Anne-Sophie Sergent & Alejandro Martinez-Meier & Luc Pâques & Philippe Rozenberg, 2014. "Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic Analysis," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-13, September.
    11. Arthur Tenenhaus & Michel Tenenhaus, 2011. "Regularized Generalized Canonical Correlation Analysis," Psychometrika, Springer;The Psychometric Society, vol. 76(2), pages 257-284, April.
    12. Hui, Francis K.C., 2017. "Model-based simultaneous clustering and ordination of multivariate abundance data in ecology," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 1-10.
    13. Julie Josse & Jérôme Pagès & François Husson, 2011. "Multiple imputation in principal component analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 5(3), pages 231-246, October.
    14. Oliver Wieczorek & Melanie Malzahn, 2024. "Exploring an extinct society through the lens of Habitus-Field theory and the Tocharian text corpus," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-10, December.
    15. Michael Greenacre & Paul Lewi, 2009. "Distributional Equivalence and Subcompositional Coherence in the Analysis of Compositional Data, Contingency Tables and Ratio-Scale Measurements," Journal of Classification, Springer;The Classification Society, vol. 26(1), pages 29-54, April.
    16. Juan Carlos Suárez Salazar & Marie Ange Ngo Bieng & Luz Marina Melgarejo & Julio A Di Rienzo & Fernando Casanoves, 2018. "First typology of cacao (Theobroma cacao L.) systems in Colombian Amazonia, based on tree species richness, canopy structure and light availability," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-20, February.
    17. Archimbaud, Aurore & Nordhausen, Klaus & Ruiz-Gazen, Anne, 2018. "ICS for multivariate outlier detection with application to quality control," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 184-199.
    18. Michael Greenacre, 2011. "The contributions of rare objects in correspondence analysis," Economics Working Papers 1278, Department of Economics and Business, Universitat Pompeu Fabra.
    19. Michael Greenacre & Patrick J. F Groenen & Trevor Hastie & Alfonso Iodice d’Enza & Angelos Markos & Elena Tuzhilina, 2023. "Principal component analysis," Economics Working Papers 1856, Department of Economics and Business, Universitat Pompeu Fabra.
    20. Kudlats, Jerry & Money, Arthur & Hair, Joseph F., 2014. "Correspondence analysis: A promising technique to interpret qualitative data in family business research," Journal of Family Business Strategy, Elsevier, vol. 5(1), pages 30-40.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:72:y:2014:i:c:p:176-189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.