IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i2p93-d63374.html
   My bibliography  Save this article

Quantitative Model and Metrics of Electrical Grids’ Resilience Evaluated at a Power Distribution Level

Author

Listed:
  • Alexis Kwasinski

    (Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA)

Abstract

This paper presents a framework to systematically measure and assess power grids’ resilience with a focus on performance as perceived by customers at the power distribution level. The proposed framework considers an analogous measure of availability as a basic metric for resilience and defines other key resilience-related concepts and metrics, such as resistance and brittleness. This framework also provides a measurement for the degree of functional dependency of loads on power grids and demonstrates how the concepts of resilience and dependency are inherently related. It also discusses the implications of considering human-centered processes as fundamental constituting components of infrastructure systems. Thanks to its quantitative nature, the proposed resilience framework enables the creation of tools to evaluate power grids’ performance as a lifeline and to assess the effects of plans for optimal electrical power infrastructure deployment and operation. The discussion is supported by practical examples and empirical records from field damage assessments conducted after recent notable natural disasters.

Suggested Citation

  • Alexis Kwasinski, 2016. "Quantitative Model and Metrics of Electrical Grids’ Resilience Evaluated at a Power Distribution Level," Energies, MDPI, vol. 9(2), pages 1-27, February.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:2:p:93-:d:63374
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/2/93/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/2/93/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ouyang, Min & Wang, Zhenghua, 2015. "Resilience assessment of interdependent infrastructure systems: With a focus on joint restoration modeling and analysis," Reliability Engineering and System Safety, Elsevier, vol. 141(C), pages 74-82.
    2. Francis, Royce & Bekera, Behailu, 2014. "A metric and frameworks for resilience analysis of engineered and infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 90-103.
    3. Ruth, Matthias & Özgün, Onur & Wachsmuth, Jakob & Gößling-Reisemann, Stefan, 2015. "Dynamics of energy transitions under changing socioeconomic, technological and climate conditions in Northwest Germany," Ecological Economics, Elsevier, vol. 111(C), pages 29-47.
    4. Filippini, Roberto & Silva, Andrés, 2014. "A modeling framework for the resilience analysis of networked systems-of-systems based on functional dependencies," Reliability Engineering and System Safety, Elsevier, vol. 125(C), pages 82-91.
    5. Zio, E., 2009. "Reliability engineering: Old problems and new challenges," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 125-141.
    6. Alexander Gutfraind, 2012. "Optimizing Network Topology for Cascade Resilience," Springer Optimization and Its Applications, in: My T. Thai & Panos M. Pardalos (ed.), Handbook of Optimization in Complex Networks, chapter 0, pages 37-59, Springer.
    7. Labaka, Leire & Hernantes, Josune & Sarriegi, Jose M., 2015. "Resilience framework for critical infrastructures: An empirical study in a nuclear plant," Reliability Engineering and System Safety, Elsevier, vol. 141(C), pages 92-105.
    8. Woods, David D., 2015. "Four concepts for resilience and the implications for the future of resilience engineering," Reliability Engineering and System Safety, Elsevier, vol. 141(C), pages 5-9.
    9. Lundberg, Jonas & Johansson, Björn JE, 2015. "Systemic resilience model," Reliability Engineering and System Safety, Elsevier, vol. 141(C), pages 22-32.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jasiūnas, Justinas & Lund, Peter D. & Mikkola, Jani, 2021. "Energy system resilience – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. Plotnek, Jordan J. & Slay, Jill, 2021. "Power systems resilience: Definition and taxonomy with a view towards metrics," International Journal of Critical Infrastructure Protection, Elsevier, vol. 33(C).
    3. Mishra, Dillip Kumar & Ghadi, Mojtaba Jabbari & Azizivahed, Ali & Li, Li & Zhang, Jiangfeng, 2021. "A review on resilience studies in active distribution systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Youba Nait Belaid & Patrick Coudray & José Sanchez-Torres & Yi-Ping Fang & Zhiguo Zeng & Anne Barros, 2021. "Resilience Quantification of Smart Distribution Networks—A Bird’s Eye View Perspective," Energies, MDPI, vol. 14(10), pages 1-29, May.
    5. Hussain, Akhtar & Bui, Van-Hai & Kim, Hak-Man, 2019. "Microgrids as a resilience resource and strategies used by microgrids for enhancing resilience," Applied Energy, Elsevier, vol. 240(C), pages 56-72.
    6. Yao He & Yongchun Yang & Meimei Wang & Xudong Zhang, 2022. "Resilience Analysis of Container Port Shipping Network Structure: The Case of China," Sustainability, MDPI, vol. 14(15), pages 1-17, August.
    7. Fauzan Hanif Jufri & Jun-Sung Kim & Jaesung Jung, 2017. "Analysis of Determinants of the Impact and the Grid Capability to Evaluate and Improve Grid Resilience from Extreme Weather Event," Energies, MDPI, vol. 10(11), pages 1-17, November.
    8. Pau Lloret-Gallego & Mònica Aragüés-Peñalba & Lien Van Schepdael & Eduard Bullich-Massagué & Pol Olivella-Rosell & Andreas Sumper, 2017. "Methodology for the Evaluation of Resilience of ICT Systems for Smart Distribution Grids," Energies, MDPI, vol. 10(9), pages 1-16, August.
    9. Paul, Shuva & Poudyal, Abodh & Poudel, Shiva & Dubey, Anamika & Wang, Zhaoyu, 2024. "Resilience assessment and planning in power distribution systems: Past and future considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    10. Phylicia Cicilio & David Glennon & Adam Mate & Arthur Barnes & Vishvas Chalishazar & Eduardo Cotilla-Sanchez & Bjorn Vaagensmith & Jake Gentle & Craig Rieger & Richard Wies & Mohammad Heidari Kapourch, 2021. "Resilience in an Evolving Electrical Grid," Energies, MDPI, vol. 14(3), pages 1-25, January.
    11. Hanif, Sarmad & Mukherjee, Monish & Poudel, Shiva & Yu, Min Gyung & Jinsiwale, Rohit A. & Hardy, Trevor D. & Reeve, Hayden M., 2023. "Analyzing at-scale distribution grid response to extreme temperatures," Applied Energy, Elsevier, vol. 337(C).
    12. Jiazheng Lu & Jun Guo & Zhou Jian & Yihao Yang & Wenhu Tang, 2018. "Resilience Assessment and Its Enhancement in Tackling Adverse Impact of Ice Disasters for Power Transmission Systems," Energies, MDPI, vol. 11(9), pages 1-15, August.
    13. Mohammad Najarian & Gino J. Lim, 2019. "Design and Assessment Methodology for System Resilience Metrics," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1885-1898, September.
    14. Younesi, Abdollah & Shayeghi, Hossein & Safari, Amin & Siano, Pierluigi, 2020. "Assessing the resilience of multi microgrid based widespread power systems against natural disasters using Monte Carlo Simulation," Energy, Elsevier, vol. 207(C).
    15. Massimo Cresta & Fabio Massimo Gatta & Alberto Geri & Marco Maccioni & Marco Paulucci, 2021. "Resilience Assessment in Distribution Grids: A Complete Simulation Model," Energies, MDPI, vol. 14(14), pages 1-18, July.
    16. Zdenek Dvorak & Nikola Chovancikova & Jozef Bruk & Martin Hromada, 2021. "Methodological Framework for Resilience Assessment of Electricity Infrastructure in Conditions of Slovak Republic," IJERPH, MDPI, vol. 18(16), pages 1-29, August.
    17. Umunnakwe, A. & Huang, H. & Oikonomou, K. & Davis, K.R., 2021. "Quantitative analysis of power systems resilience: Standardization, categorizations, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    18. Márcio das Chagas Moura & Helder Henrique Lima Diniz & Enrique López Droguett & Beatriz Sales da Cunha & Isis Didier Lins & Vicente Ribeiro Simoni, 2017. "Embedding resilience in the design of the electricity supply for industrial clients," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-33, November.
    19. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    20. Tiedmann, Helena R. & Faust, Kasey M. & Sela, Lina, 2024. "Looking beyond individual failures: A system-wide assessment of water infrastructure resilience to extreme events," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    21. Karimi, Masoumeh & Ravadanegh, Sajad Najafi & Haghifam, Mahmoud-Reza, 2021. "A study on resilient and cost-based design in power distribution network against severe hurricane," International Journal of Critical Infrastructure Protection, Elsevier, vol. 35(C).
    22. Younesi, Abdollah & Shayeghi, Hossein & Wang, Zongjie & Siano, Pierluigi & Mehrizi-Sani, Ali & Safari, Amin, 2022. "Trends in modern power systems resilience: State-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    23. Ebrahim Karan & Sadegh Asgari, 2021. "Resilience of food, energy, and water systems to a sudden labor shortage," Environment Systems and Decisions, Springer, vol. 41(1), pages 63-81, March.
    24. Jufri, Fauzan Hanif & Widiputra, Victor & Jung, Jaesung, 2019. "State-of-the-art review on power grid resilience to extreme weather events: Definitions, frameworks, quantitative assessment methodologies, and enhancement strategies," Applied Energy, Elsevier, vol. 239(C), pages 1049-1065.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Baoping & Xie, Min & Liu, Yonghong & Liu, Yiliu & Feng, Qiang, 2018. "Availability-based engineering resilience metric and its corresponding evaluation methodology," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 216-224.
    2. Yang, Bofan & Zhang, Lin & Zhang, Bo & Xiang, Yang & An, Lei & Wang, Wenfeng, 2022. "Complex equipment system resilience: Composition, measurement and element analysis," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    3. Feng, Qiang & Zhao, Xiujie & Fan, Dongming & Cai, Baoping & Liu, Yiqi & Ren, Yi, 2019. "Resilience design method based on meta-structure: A case study of offshore wind farm," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 232-244.
    4. Caputo, A.C. & Donati, L. & Salini, P., 2023. "Estimating resilience of manufacturing plants to physical disruptions: Model and application," International Journal of Production Economics, Elsevier, vol. 266(C).
    5. Cassottana, Beatrice & Shen, Lijuan & Tang, Loon Ching, 2019. "Modeling the recovery process: A key dimension of resilience," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    6. Caputo, Antonio C. & Kalemi, Bledar & Paolacci, Fabrizio & Corritore, Daniele, 2020. "Computing resilience of process plants under Na-Tech events: Methodology and application to sesmic loading scenarios," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    7. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    8. Hosseini, Seyedmohsen & Barker, Kash & Ramirez-Marquez, Jose E., 2016. "A review of definitions and measures of system resilience," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 47-61.
    9. Cheng, Yao & Elsayed, E.A. & Chen, Xi, 2021. "Random Multi Hazard Resilience Modeling of Engineered Systems and Critical Infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    10. Jingjing Kong & Slobodan P. Simonovic & Chao Zhang, 2019. "Resilience Assessment of Interdependent Infrastructure Systems: A Case Study Based on Different Response Strategies," Sustainability, MDPI, vol. 11(23), pages 1-31, November.
    11. Das, Laya & Munikoti, Sai & Natarajan, Balasubramaniam & Srinivasan, Babji, 2020. "Measuring smart grid resilience: Methods, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    12. Tran, Huy T. & Balchanos, Michael & Domerçant, Jean Charles & Mavris, Dimitri N., 2017. "A framework for the quantitative assessment of performance-based system resilience," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 73-84.
    13. Adel Mottahedi & Farhang Sereshki & Mohammad Ataei & Ali Nouri Qarahasanlou & Abbas Barabadi, 2021. "The Resilience of Critical Infrastructure Systems: A Systematic Literature Review," Energies, MDPI, vol. 14(6), pages 1-32, March.
    14. Uday, Payuna & Chandrahasa, Rakshit & Marais, Karen, 2019. "System Importance Measures: Definitions and Application to System-of-Systems Analysis," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    15. Jufri, Fauzan Hanif & Widiputra, Victor & Jung, Jaesung, 2019. "State-of-the-art review on power grid resilience to extreme weather events: Definitions, frameworks, quantitative assessment methodologies, and enhancement strategies," Applied Energy, Elsevier, vol. 239(C), pages 1049-1065.
    16. Márcio das Chagas Moura & Helder Henrique Lima Diniz & Enrique López Droguett & Beatriz Sales da Cunha & Isis Didier Lins & Vicente Ribeiro Simoni, 2017. "Embedding resilience in the design of the electricity supply for industrial clients," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-33, November.
    17. Adrian J. Hickford & Simon P. Blainey & Alejandro Ortega Hortelano & Raghav Pant, 2018. "Resilience engineering: theory and practice in interdependent infrastructure systems," Environment Systems and Decisions, Springer, vol. 38(3), pages 278-291, September.
    18. Hu, Jinqiu & Khan, Faisal & Zhang, Laibin, 2021. "Dynamic resilience assessment of the Marine LNG offloading system," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    19. Trucco, Paolo & Petrenj, Boris, 2023. "Characterisation of resilience metrics in full-scale applications to interdependent infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    20. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & Small, Michael & Li, Man, 2023. "Improving resilience of high-speed train by optimizing repair strategies," Reliability Engineering and System Safety, Elsevier, vol. 237(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:2:p:93-:d:63374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.