IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0185001.html
   My bibliography  Save this article

A multimodal logistics service network design with time windows and environmental concerns

Author

Listed:
  • Dezhi Zhang
  • Runzhong He
  • Shuangyan Li
  • Zhongwei Wang

Abstract

The design of a multimodal logistics service network with customer service time windows and environmental costs is an important and challenging issue. Accordingly, this work established a model to minimize the total cost of multimodal logistics service network design with time windows and environmental concerns. The proposed model incorporates CO2 emission costs to determine the optimal transportation mode combinations and investment selections for transfer nodes, which consider transport cost, transport time, carbon emission, and logistics service time window constraints. Furthermore, genetic and heuristic algorithms are proposed to set up the abovementioned optimal model. A numerical example is provided to validate the model and the abovementioned two algorithms. Then, comparisons of the performance of the two algorithms are provided. Finally, this work investigates the effects of the logistics service time windows and CO2 emission taxes on the optimal solution. Several important management insights are obtained.

Suggested Citation

  • Dezhi Zhang & Runzhong He & Shuangyan Li & Zhongwei Wang, 2017. "A multimodal logistics service network design with time windows and environmental concerns," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-19, September.
  • Handle: RePEc:plo:pone00:0185001
    DOI: 10.1371/journal.pone.0185001
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0185001
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0185001&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0185001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Liotta, Giacomo & Stecca, Giuseppe & Kaihara, Toshiya, 2015. "Optimisation of freight flows and sourcing in sustainable production and transportation networks," International Journal of Production Economics, Elsevier, vol. 164(C), pages 351-365.
    2. SteadieSeifi, M. & Dellaert, N.P. & Nuijten, W. & Van Woensel, T. & Raoufi, R., 2014. "Multimodal freight transportation planning: A literature review," European Journal of Operational Research, Elsevier, vol. 233(1), pages 1-15.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kai Kang & Wei Pu & Yanfang Ma & Xiaoyu Wang, 2018. "Bi-objective inventory allocation planning problem with supplier selection and carbon trading under uncertainty," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-25, November.
    2. Dezhi Zhang & Xin Wang & Shuangyan Li & Nan Ni & Zhuo Zhang, 2018. "Joint optimization of green vehicle scheduling and routing problem with time-varying speeds," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-20, February.
    3. Noorliza Karia, 2022. "Antecedents and Consequences of Environmental Capability towards Sustainability and Competitiveness," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    4. Yan Sun & Yue Lu & Cevin Zhang, 2019. "Fuzzy Linear Programming Models for a Green Logistics Center Location and Allocation Problem under Mixed Uncertainties Based on Different Carbon Dioxide Emission Reduction Methods," Sustainability, MDPI, vol. 11(22), pages 1-24, November.
    5. K. Noorliza, 2023. "Determinants of an Environmentally Sustainable Model for Competitiveness," Sustainability, MDPI, vol. 15(2), pages 1-18, January.
    6. Rizwan Shoukat, 2023. "Multimodal or intermodal: greenhouse gas emissions in less than container load in China–Pakistan trade," Environment Systems and Decisions, Springer, vol. 43(2), pages 265-280, June.
    7. Yan Sun & Xinya Li & Xia Liang & Cevin Zhang, 2019. "A Bi-Objective Fuzzy Credibilistic Chance-Constrained Programming Approach for the Hazardous Materials Road-Rail Multimodal Routing Problem under Uncertainty and Sustainability," Sustainability, MDPI, vol. 11(9), pages 1-27, May.
    8. Yan Sun & Xinya Li, 2019. "Fuzzy Programming Approaches for Modeling a Customer-Centred Freight Routing Problem in the Road-Rail Intermodal Hub-and-Spoke Network with Fuzzy Soft Time Windows and Multiple Sources of Time Uncerta," Mathematics, MDPI, vol. 7(8), pages 1-40, August.
    9. Archetti, Claudia & Peirano, Lorenzo & Speranza, M. Grazia, 2022. "Optimization in multimodal freight transportation problems: A Survey," European Journal of Operational Research, Elsevier, vol. 299(1), pages 1-20.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rizwan Shoukat, 2024. "How Recycled Grade is Economical? An Application of MILP and Evolutionary Algorithms in Intermodal Networks Under Uncertain Demand," Networks and Spatial Economics, Springer, vol. 24(1), pages 231-260, March.
    2. Archetti, Claudia & Peirano, Lorenzo & Speranza, M. Grazia, 2022. "Optimization in multimodal freight transportation problems: A Survey," European Journal of Operational Research, Elsevier, vol. 299(1), pages 1-20.
    3. Dan Liu & Zhenghong Deng & Qipeng Sun & Yong Wang & Yinhai Wang, 2019. "Design and Freight Corridor-Fleet Size Choice in Collaborative Intermodal Transportation Network Considering Economies of Scale," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    4. Qian Dai & Jiaqi Yang & Dong Li, 2018. "Modeling a Three-Mode Hybrid Port-Hinterland Freight Intermodal Distribution Network with Environmental Consideration: The Case of the Yangtze River Economic Belt in China," Sustainability, MDPI, vol. 10(9), pages 1-26, August.
    5. Ben-Ammar, Oussama & Bettayeb, Belgacem & Dolgui, Alexandre, 2019. "Optimization of multi-period supply planning under stochastic lead times and a dynamic demand," International Journal of Production Economics, Elsevier, vol. 218(C), pages 106-117.
    6. Babagolzadeh, Mahla & Zhang, Yahua & Abbasi, Babak & Shrestha, Anup & Zhang, Anming, 2022. "Promoting Australian regional airports with subsidy schemes: Optimised downstream logistics using vehicle routing problem," Transport Policy, Elsevier, vol. 128(C), pages 38-51.
    7. Zhang, M. & Pel, A.J., 2016. "Synchromodal hinterland freight transport: Model study for the port of Rotterdam," Journal of Transport Geography, Elsevier, vol. 52(C), pages 1-10.
    8. Maiyar, Lohithaksha M. & Thakkar, Jitesh J., 2019. "Modelling and analysis of intermodal food grain transportation under hub disruption towards sustainability," International Journal of Production Economics, Elsevier, vol. 217(C), pages 281-297.
    9. Maiyar, Lohithaksha M & Thakkar, Jitesh J, 2019. "Environmentally conscious logistics planning for food grain industry considering wastages employing multi objective hybrid particle swarm optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 220-248.
    10. Wu, Xin (Bruce) & Lu, Jiawei & Wu, Shengnan & Zhou, Xuesong (Simon), 2021. "Synchronizing time-dependent transportation services: Reformulation and solution algorithm using quadratic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 140-179.
    11. SteadieSeifi, M. & Dellaert, N.P. & Nuijten, W. & Van Woensel, T., 2017. "A metaheuristic for the multimodal network flow problem with product quality preservation and empty repositioning," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 321-344.
    12. Leonard Heilig & Stefan Voß, 0. "Information systems in seaports: a categorization and overview," Information Technology and Management, Springer, vol. 0, pages 1-23.
    13. Kazemi, Yasaman & Szmerekovsky, Joseph, 2015. "Modeling downstream petroleum supply chain: The importance of multi-mode transportation to strategic planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 83(C), pages 111-125.
    14. W. J. A. Heeswijk & M. R. K. Mes & J. M. J. Schutten & W. H. M. Zijm, 2018. "Freight consolidation in intermodal networks with reloads," Flexible Services and Manufacturing Journal, Springer, vol. 30(3), pages 452-485, September.
    15. Crainic, Teodor Gabriel & Perboli, Guido & Rosano, Mariangela, 2018. "Simulation of intermodal freight transportation systems: a taxonomy," European Journal of Operational Research, Elsevier, vol. 270(2), pages 401-418.
    16. Panagiotis Ypsilantis & Rob Zuidwijk, 2019. "Collaborative Fleet Deployment and Routing for Sustainable Transport," Sustainability, MDPI, vol. 11(20), pages 1-26, October.
    17. Mohamad Darayi & Kash Barker & Joost R. Santos, 2017. "Component Importance Measures for Multi-Industry Vulnerability of a Freight Transportation Network," Networks and Spatial Economics, Springer, vol. 17(4), pages 1111-1136, December.
    18. De Moor, Bram J. & Creemers, Stefan & Boute, Robert N., 2023. "Breaking truck dominance in supply chains: Proactive freight consolidation and modal split transport," International Journal of Production Economics, Elsevier, vol. 257(C).
    19. Mei, Qihuang & Li, Jianbin & Ursavas, Evrim & Zhu, Stuart X. & Luo, Xiaomeng, 2021. "Freight transportation planning in platform service supply chain considering carbon emissions," International Journal of Production Economics, Elsevier, vol. 240(C).
    20. Ali Najmi & Taha H. Rashidi & Alireza Abbasi & S. Travis Waller, 2017. "Reviewing the transport domain: an evolutionary bibliometrics and network analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 843-865, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0185001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.