IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0192000.html
   My bibliography  Save this article

Joint optimization of green vehicle scheduling and routing problem with time-varying speeds

Author

Listed:
  • Dezhi Zhang
  • Xin Wang
  • Shuangyan Li
  • Nan Ni
  • Zhuo Zhang

Abstract

Based on an analysis of the congestion effect and changes in the speed of vehicle flow during morning and evening peaks in a large- or medium-sized city, the piecewise function is used to capture the rules of the time-varying speed of vehicles, which are very important in modelling their fuel consumption and CO2 emission. A joint optimization model of the green vehicle scheduling and routing problem with time-varying speeds is presented in this study. Extra wages during nonworking periods and soft time-window constraints are considered. A heuristic algorithm based on the adaptive large neighborhood search algorithm is also presented. Finally, a numerical simulation example is provided to illustrate the optimization model and its algorithm. Results show that, (1) the shortest route is not necessarily the route that consumes the least energy, (2) the departure time influences the vehicle fuel consumption and CO2 emissions and the optimal departure time saves on fuel consumption and reduces CO2 emissions by up to 5.4%, and (3) extra driver wages have significant effects on routing and departure time slot decisions.

Suggested Citation

  • Dezhi Zhang & Xin Wang & Shuangyan Li & Nan Ni & Zhuo Zhang, 2018. "Joint optimization of green vehicle scheduling and routing problem with time-varying speeds," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-20, February.
  • Handle: RePEc:plo:pone00:0192000
    DOI: 10.1371/journal.pone.0192000
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0192000
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0192000&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0192000?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bektas, Tolga & Laporte, Gilbert, 2011. "The Pollution-Routing Problem," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1232-1250, September.
    2. Sahin, Bahri & Yilmaz, Huseyin & Ust, Yasin & Guneri, Ali Fuat & Gulsun, BahadIr, 2009. "An approach for analysing transportation costs and a case study," European Journal of Operational Research, Elsevier, vol. 193(1), pages 1-11, February.
    3. Demir, Emrah & Bektaş, Tolga & Laporte, Gilbert, 2014. "A review of recent research on green road freight transportation," European Journal of Operational Research, Elsevier, vol. 237(3), pages 775-793.
    4. Qian, Jiani & Eglese, Richard, 2016. "Fuel emissions optimization in vehicle routing problems with time-varying speeds," European Journal of Operational Research, Elsevier, vol. 248(3), pages 840-848.
    5. Dekker, Rommert & Bloemhof, Jacqueline & Mallidis, Ioannis, 2012. "Operations Research for green logistics – An overview of aspects, issues, contributions and challenges," European Journal of Operational Research, Elsevier, vol. 219(3), pages 671-679.
    6. Lysgaard, Jens & Wøhlk, Sanne, 2014. "A branch-and-cut-and-price algorithm for the cumulative capacitated vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 236(3), pages 800-810.
    7. Dezhi Zhang & Runzhong He & Shuangyan Li & Zhongwei Wang, 2017. "A multimodal logistics service network design with time windows and environmental concerns," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-19, September.
    8. G. B. Dantzig & J. H. Ramser, 1959. "The Truck Dispatching Problem," Management Science, INFORMS, vol. 6(1), pages 80-91, October.
    9. Sze, Jeeu Fong & Salhi, Said & Wassan, Niaz, 2017. "The cumulative capacitated vehicle routing problem with min-sum and min-max objectives: An effective hybridisation of adaptive variable neighbourhood search and large neighbourhood search," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 162-184.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kai Kang & Wei Pu & Yanfang Ma & Xiaoyu Wang, 2018. "Bi-objective inventory allocation planning problem with supplier selection and carbon trading under uncertainty," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-25, November.
    2. Mohammad Asghari & Seyed Mohammad Javad Mirzapour Al-E-Hashem, 2021. "Green vehicle routing problem: A state-of-the-art review," Post-Print hal-03182944, HAL.
    3. Emna Marrekchi & Walid Besbes & Diala Dhouib & Emrah Demir, 2021. "A review of recent advances in the operations research literature on the green routing problem and its variants," Annals of Operations Research, Springer, vol. 304(1), pages 529-574, September.
    4. Magdalena Mucowska, 2021. "Trends of Environmentally Sustainable Solutions of Urban Last-Mile Deliveries on the E-Commerce Market—A Literature Review," Sustainability, MDPI, vol. 13(11), pages 1-26, May.
    5. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    6. Yangkun Xia & Zhuo Fu & Lijun Pan & Fenghua Duan, 2018. "Tabu search algorithm for the distance-constrained vehicle routing problem with split deliveries by order," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emna Marrekchi & Walid Besbes & Diala Dhouib & Emrah Demir, 2021. "A review of recent advances in the operations research literature on the green routing problem and its variants," Annals of Operations Research, Springer, vol. 304(1), pages 529-574, September.
    2. Bektaş, Tolga & Ehmke, Jan Fabian & Psaraftis, Harilaos N. & Puchinger, Jakob, 2019. "The role of operational research in green freight transportation," European Journal of Operational Research, Elsevier, vol. 274(3), pages 807-823.
    3. Ehmke, Jan Fabian & Campbell, Ann M. & Thomas, Barrett W., 2018. "Optimizing for total costs in vehicle routing in urban areas," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 242-265.
    4. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    5. Kramer, Raphael & Subramanian, Anand & Vidal, Thibaut & Cabral, Lucídio dos Anjos F., 2015. "A matheuristic approach for the Pollution-Routing Problem," European Journal of Operational Research, Elsevier, vol. 243(2), pages 523-539.
    6. Brunner, Carlos & Giesen, Ricardo & Klapp, Mathias A. & Flórez-Calderón, Luz, 2021. "Vehicle routing problem with steep roads," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 1-17.
    7. Goeke, Dominik & Schneider, Michael, 2015. "Routing a mixed fleet of electric and conventional vehicles," European Journal of Operational Research, Elsevier, vol. 245(1), pages 81-99.
    8. Sam Heshmati & Jannes Verstichel & Eline Esprit & Greet Vanden Berghe, 2019. "Alternative e-commerce delivery policies," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(3), pages 217-248, September.
    9. Xiao, Yiyong & Konak, Abdullah, 2016. "The heterogeneous green vehicle routing and scheduling problem with time-varying traffic congestion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 88(C), pages 146-166.
    10. Behnke, Martin & Kirschstein, Thomas & Bierwirth, Christian, 2021. "A column generation approach for an emission-oriented vehicle routing problem on a multigraph," European Journal of Operational Research, Elsevier, vol. 288(3), pages 794-809.
    11. Turkensteen, Marcel, 2017. "The accuracy of carbon emission and fuel consumption computations in green vehicle routing," European Journal of Operational Research, Elsevier, vol. 262(2), pages 647-659.
    12. Dongqing Zhang & Zhaoxia Guo, 2019. "On the Necessity and Effects of Considering Correlated Stochastic Speeds in Shortest Path Problems Under Sustainable Environments," Sustainability, MDPI, vol. 12(1), pages 1-14, December.
    13. Zhou, Yizi & Mandania, Rupal & Liu, Jiyin, 2022. "Green vehicle routing and dynamic pricing for scheduling on-site services," International Journal of Production Economics, Elsevier, vol. 254(C).
    14. Goeke, D. & Schneider, M., 2015. "Routing a Mixed Fleet of Electric and Conventional Vehicles," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 65939, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    15. Grigorios D. Konstantakopoulos & Sotiris P. Gayialis & Evripidis P. Kechagias, 2022. "Vehicle routing problem and related algorithms for logistics distribution: a literature review and classification," Operational Research, Springer, vol. 22(3), pages 2033-2062, July.
    16. Micheli, Guido J.L. & Mantella, Fabio, 2018. "Modelling an environmentally-extended inventory routing problem with demand uncertainty and a heterogeneous fleet under carbon control policies," International Journal of Production Economics, Elsevier, vol. 204(C), pages 316-327.
    17. Qiu, Rui & Xu, Jiuping & Ke, Ruimin & Zeng, Ziqiang & Wang, Yinhai, 2020. "Carbon pricing initiatives-based bi-level pollution routing problem," European Journal of Operational Research, Elsevier, vol. 286(1), pages 203-217.
    18. Huang, Yixiao & Zhao, Lei & Van Woensel, Tom & Gross, Jean-Philippe, 2017. "Time-dependent vehicle routing problem with path flexibility," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 169-195.
    19. Herbert Kopfer & Benedikt Vornhusen, 2019. "Energy vehicle routing problem for differently sized and powered vehicles," Journal of Business Economics, Springer, vol. 89(7), pages 793-821, September.
    20. Mohammad Asghari & Seyed Mohammad Javad Mirzapour Al-E-Hashem, 2021. "Green vehicle routing problem: A state-of-the-art review," Post-Print hal-03182944, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0192000. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.