IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0184756.html
   My bibliography  Save this article

Formal comment on: Myhrvold (2016) Dinosaur metabolism and the allometry of maximum growth rate. PLoS ONE; 11(11): e0163205

Author

Listed:
  • Eva Maria Griebeler
  • Jan Werner

Abstract

In his 2016 paper, Myhrvold criticized ours from 2014 on maximum growth rates (Gmax, maximum gain in body mass observed within a time unit throughout an individual’s ontogeny) and thermoregulation strategies (ectothermy, endothermy) of 17 dinosaurs. In our paper, we showed that Gmax values of similar-sized extant ectothermic and endothermic vertebrates overlap. This strongly questions a correct assignment of a thermoregulation strategy to a dinosaur only based on its Gmax and (adult) body mass (M). Contrary, Gmax separated similar-sized extant reptiles and birds (Sauropsida) and Gmax values of our studied dinosaurs were similar to those seen in extant similar-sized (if necessary scaled-up) fast growing ectothermic reptiles. Myhrvold examined two hypotheses (H1 and H2) regarding our study. However, we did neither infer dinosaurian thermoregulation strategies from group-wide averages (H1) nor were our results based on that Gmax and metabolic rate (MR) are related (H2). In order to assess whether single dinosaurian Gmax values fit to those of extant endotherms (birds) or of ectotherms (reptiles), we already used a method suggested by Myhrvold to avoid H1, and we only discussed pros and cons of a relation between Gmax and MR and did not apply it (H2). We appreciate Myhrvold’s efforts in eliminating the correlation between Gmax and M in order to statistically improve vertebrate scaling regressions on maximum gain in body mass. However, we show here that his mass-specific maximum growth rate (kC) replacing Gmax (= MkC) does not model the expected higher mass gain in larger than in smaller species for any set of species. We also comment on, why we considered extant reptiles and birds as reference models for extinct dinosaurs and why we used phylogenetically-informed regression analysis throughout our study. Finally, we question several arguments given in Myhrvold in order to support his results.

Suggested Citation

  • Eva Maria Griebeler & Jan Werner, 2018. "Formal comment on: Myhrvold (2016) Dinosaur metabolism and the allometry of maximum growth rate. PLoS ONE; 11(11): e0163205," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-18, February.
  • Handle: RePEc:plo:pone00:0184756
    DOI: 10.1371/journal.pone.0184756
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0184756
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0184756&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0184756?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mark Pagel, 1999. "Inferring the historical patterns of biological evolution," Nature, Nature, vol. 401(6756), pages 877-884, October.
    2. Gregory M. Erickson & Peter J. Makovicky & Philip J. Currie & Mark A. Norell & Scott A. Yerby & Christopher A. Brochu, 2004. "Gigantism and comparative life-history parameters of tyrannosaurid dinosaurs," Nature, Nature, vol. 430(7001), pages 772-775, August.
    3. Nathan P Myhrvold, 2016. "Dinosaur Metabolism and the Allometry of Maximum Growth Rate," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-35, November.
    4. Meike Köhler & Nekane Marín-Moratalla & Xavier Jordana & Ronny Aanes, 2012. "Seasonal bone growth and physiology in endotherms shed light on dinosaur physiology," Nature, Nature, vol. 487(7407), pages 358-361, July.
    5. Gregory M. Erickson & Kristina Curry Rogers & Scott A. Yerby, 2001. "Dinosaurian growth patterns and rapid avian growth rates," Nature, Nature, vol. 412(6845), pages 429-433, July.
    6. Craig R. White, 2010. "There is no single p," Nature, Nature, vol. 464(7289), pages 691-693, April.
    7. Eva Maria Griebeler & Nicole Klein & P Martin Sander, 2013. "Aging, Maturation and Growth of Sauropodomorph Dinosaurs as Deduced from Growth Curves Using Long Bone Histological Data: An Assessment of Methodological Constraints and Solutions," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-17, June.
    8. Nathan P Myhrvold, 2013. "Revisiting the Estimation of Dinosaur Growth Rates," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-24, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eva Maria Griebeler & Nicole Klein & P Martin Sander, 2013. "Aging, Maturation and Growth of Sauropodomorph Dinosaurs as Deduced from Growth Curves Using Long Bone Histological Data: An Assessment of Methodological Constraints and Solutions," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-17, June.
    2. Nathan P Myhrvold, 2016. "Dinosaur Metabolism and the Allometry of Maximum Growth Rate," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-35, November.
    3. Nathan P Myhrvold, 2013. "Revisiting the Estimation of Dinosaur Growth Rates," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-24, December.
    4. Rodrigo S Rios & Cristian Salgado-Luarte & Ernesto Gianoli, 2014. "Species Divergence and Phylogenetic Variation of Ecophysiological Traits in Lianas and Trees," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-10, June.
    5. Aris Katzourakis & Gkikas Magiorkinis & Aaron G Lim & Sunetra Gupta & Robert Belshaw & Robert Gifford, 2014. "Larger Mammalian Body Size Leads to Lower Retroviral Activity," PLOS Pathogens, Public Library of Science, vol. 10(7), pages 1-11, July.
    6. Jonas Eberle & Renier Myburgh & Dirk Ahrens, 2014. "The Evolution of Morphospace in Phytophagous Scarab Chafers: No Competition - No Divergence?," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-16, May.
    7. Mark C Mainwaring & Jenő Nagy & Mark E Hauber, 2021. "Sex-specific contributions to nest building in birds," Behavioral Ecology, International Society for Behavioral Ecology, vol. 32(6), pages 1075-1085.
    8. Annie Bissonnette & Mathias Franz & Oliver Schülke & Julia Ostner, 2014. "Socioecology, but not cognition, predicts male coalitions across primates," Behavioral Ecology, International Society for Behavioral Ecology, vol. 25(4), pages 794-801.
    9. Elspeth Kenny & Tim R. Birkhead & Jonathan P. Green, 2017. "Allopreening in birds is associated with parental cooperation over offspring care and stable pair bonds across years," Behavioral Ecology, International Society for Behavioral Ecology, vol. 28(4), pages 1142-1148.
    10. Fernandes, Heitor B.F. & Peñaherrera-Aguirre, Mateo & Woodley of Menie, Michael A. & Figueredo, Aurelio José, 2020. "Macroevolutionary patterns and selection modes for general intelligence (G) and for commonly used neuroanatomical volume measures in primates," Intelligence, Elsevier, vol. 80(C).
    11. L. M. Diele-Viegas & R. T. Figueroa & B. Vilela & C. F. D. Rocha, 2020. "Are reptiles toast? A worldwide evaluation of Lepidosauria vulnerability to climate change," Climatic Change, Springer, vol. 159(4), pages 581-599, April.
    12. Ricarda Laumeier & Martin Brändle & Mark-Oliver Rödel & Stefan Brunzel & Roland Brandl & Stefan Pinkert, 2023. "The global importance and interplay of colour-based protective and thermoregulatory functions in frogs," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Anders Pape Møller & László Zsolt Garamszegi, 2012. "Between individual variation in risk-taking behavior and its life history consequences," Behavioral Ecology, International Society for Behavioral Ecology, vol. 23(4), pages 843-853.
    14. Brandon C. Wheeler & Clara J. Scarry & Andreas Koenig, 2013. "Rates of agonism among female primates: a cross-taxon perspective," Behavioral Ecology, International Society for Behavioral Ecology, vol. 24(6), pages 1369-1380.
    15. Aleksandar Stanojković & Svatopluk Skoupý & Hanna Johannesson & Petr Dvořák, 2024. "The global speciation continuum of the cyanobacterium Microcoleus," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    16. Alyson F Brokaw & Michael Smotherman, 2020. "Role of ecology in shaping external nasal morphology in bats and implications for olfactory tracking," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-22, January.
    17. Jørgen S Søraker & Jonathan Wright & Fredrik Øglænd Hanslin & Michael Le Pepke, 2023. "The evolution of extra-pair paternity and paternal care in birds," Behavioral Ecology, International Society for Behavioral Ecology, vol. 34(5), pages 780-789.
    18. Cinar, Ozan & Nakagawa, Shinichi & Viechtbauer, Wolfgang, 2020. "Phylogenetic multilevel meta-analysis: A simulation study on the importance of modeling the phylogeny," EcoEvoRxiv su4zv, Center for Open Science.
    19. Vall-llosera, Miquel & Cassey, Phillip, 2017. "Physical attractiveness, constraints to the trade and handling requirements drive the variation in species availability in the Australian cagebird trade," Ecological Economics, Elsevier, vol. 131(C), pages 407-413.
    20. Woodley of Menie, Michael A. & Peñaherrera-Aguirre, Mateo & Jurgensen, JohnMichael, 2022. "Using macroevolutionary patterns to distinguish primary from secondary cognitive modules in primate cross-species performance data on five cognitive ability measures," Intelligence, Elsevier, vol. 92(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0184756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.