IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1202.2532.html
   My bibliography  Save this paper

A Dynamical Approach to Operational Risk Measurement

Author

Listed:
  • Marco Bardoscia
  • Roberto Bellotti

Abstract

We propose a dynamical model for the estimation of Operational Risk in banking institutions. Operational Risk is the risk that a financial loss occurs as the result of failed processes. Examples of operational losses are the ones generated by internal frauds, human errors or failed transactions. In order to encompass the most heterogeneous set of processes, in our approach the losses of each process are generated by the interplay among random noise, interactions with other processes and the efforts the bank makes to avoid losses. We show how some relevant parameters of the model can be estimated from a database of historical operational losses, validate the estimation procedure and test the forecasting power of the model. Some advantages of our approach over the traditional statistical techniques are that it allows to follow the whole time evolution of the losses and to take into account different-time correlations among the processes.

Suggested Citation

  • Marco Bardoscia & Roberto Bellotti, 2012. "A Dynamical Approach to Operational Risk Measurement," Papers 1202.2532, arXiv.org.
  • Handle: RePEc:arx:papers:1202.2532
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1202.2532
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bardoscia, M. & Bellotti, R., 2012. "A dynamical model for forecasting operational losses," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2641-2655.
    2. Cornalba, Chiara & Giudici, Paolo, 2004. "Statistical models for operational risk management," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(1), pages 166-172.
    3. Kartik Anand & Reimer Kuhn, 2006. "Phase Transitions in Operational Risk," Papers physics/0609130, arXiv.org, revised Dec 2006.
    4. Kühn, Reimer & Neu, Peter, 2003. "Functional correlation approach to operational risk in banking organizations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 322(C), pages 650-666.
    5. R. G. Cowell & R. J. Verrall & Y. K. Yoon, 2007. "Modeling Operational Risk With Bayesian Networks," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 74(4), pages 795-827, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Zhaoyang, 2011. "Modeling the yearly Value-at-Risk for operational risk in Chinese commercial banks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(4), pages 604-616.
    2. Dalla Valle, L. & Giudici, P., 2008. "A Bayesian approach to estimate the marginal loss distributions in operational risk management," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3107-3127, February.
    3. Xu, Chi & Zheng, Chunling & Wang, Donghua & Ji, Jingru & Wang, Nuan, 2019. "Double correlation model for operational risk: Evidence from Chinese commercial banks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 327-339.
    4. Iñaki Aldasoro & Leonardo Gambacorta & Paolo Giudici & Thomas Leach, 2023. "Operational and Cyber Risks in the Financial Sector," International Journal of Central Banking, International Journal of Central Banking, vol. 19(5), pages 340-402, December.
    5. Michail Tsagris, 2021. "A New Scalable Bayesian Network Learning Algorithm with Applications to Economics," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 341-367, January.
    6. Bertrand K. Hassani & Alexis Renaudin, 2018. "The Cascade Bayesian Approach: Prior Transformation for a Controlled Integration of Internal Data, External Data and Scenarios," Risks, MDPI, vol. 6(2), pages 1-17, April.
    7. Paolo Giudici, 2015. "Scorecard models for operations management," International Journal of Data Science, Inderscience Enterprises Ltd, vol. 1(1), pages 96-101.
    8. Silvia Figini & Lijun Gao & Paolo Giudici, 2013. "Bayesian operational risk models," DEM Working Papers Series 047, University of Pavia, Department of Economics and Management.
    9. Mizgier, Kamil J. & Hora, Manpreet & Wagner, Stephan M. & Jüttner, Matthias P., 2015. "Managing operational disruptions through capital adequacy and process improvement," European Journal of Operational Research, Elsevier, vol. 245(1), pages 320-332.
    10. Deepak Tandon & Yogieta S. Mehra, 2017. "Impact of Ownership and Size on Operational Risk Management Practices: A Study of Banks in India," Global Business Review, International Management Institute, vol. 18(3), pages 795-810, June.
    11. Emma Apps, 2020. "Applying a Bayesian Network to VaR Calculations," Working Papers 202024, University of Liverpool, Department of Economics.
    12. Lu Wei & Jianping Li & Xiaoqian Zhu, 2018. "Operational Loss Data Collection: A Literature Review," Annals of Data Science, Springer, vol. 5(3), pages 313-337, September.
    13. Marcelo Ramos Martins & Adriana Miralles Schleder & Enrique López Droguett, 2014. "A Methodology for Risk Analysis Based on Hybrid Bayesian Networks: Application to the Regasification System of Liquefied Natural Gas Onboard a Floating Storage and Regasification Unit," Risk Analysis, John Wiley & Sons, vol. 34(12), pages 2098-2120, December.
    14. Danae Politou & Paolo Giudici, 2009. "Modelling Operational Risk Losses with Graphical Models and Copula Functions," Methodology and Computing in Applied Probability, Springer, vol. 11(1), pages 65-93, March.
    15. Wang, Zongrun & Wang, Wuchao & Chen, Xiaohong & Jin, Yanbo & Zhou, Yanju, 2012. "Using BS-PSD-LDA approach to measure operational risk of Chinese commercial banks," Economic Modelling, Elsevier, vol. 29(6), pages 2095-2103.
    16. Rajendra P. Srivastava & Theodore J. Mock & Jerry L. Turner, 2009. "Bayesian Fraud Risk Formula for Financial Statement Audits," Abacus, Accounting Foundation, University of Sydney, vol. 45(1), pages 66-87, March.
    17. William Percy & Kevin Dow, 2021. "The Coaching Black Box: Risk Mitigation during Change Management," JRFM, MDPI, vol. 14(8), pages 1-18, July.
    18. Bojaj, Martin M. & Muhadinovic, Milica & Bracanovic, Andrej & Mihailovic, Andrej & Radulovic, Mladen & Jolicic, Ivan & Milosevic, Igor & Milacic, Veselin, 2022. "Forecasting macroeconomic effects of stablecoin adoption: A Bayesian approach," Economic Modelling, Elsevier, vol. 109(C).
    19. Garvey, Myles D. & Carnovale, Steven & Yeniyurt, Sengun, 2015. "An analytical framework for supply network risk propagation: A Bayesian network approach," European Journal of Operational Research, Elsevier, vol. 243(2), pages 618-627.
    20. Borunda, Mónica & Jaramillo, O.A. & Reyes, Alberto & Ibargüengoytia, Pablo H., 2016. "Bayesian networks in renewable energy systems: A bibliographical survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 32-45.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1202.2532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.