IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0178304.html
   My bibliography  Save this article

Hebbian learning of hand-centred representations in a hierarchical neural network model of the primate visual system

Author

Listed:
  • Jannis Born
  • Juan M Galeazzi
  • Simon M Stringer

Abstract

A subset of neurons in the posterior parietal and premotor areas of the primate brain respond to the locations of visual targets in a hand-centred frame of reference. Such hand-centred visual representations are thought to play an important role in visually-guided reaching to target locations in space. In this paper we show how a biologically plausible, Hebbian learning mechanism may account for the development of localized hand-centred representations in a hierarchical neural network model of the primate visual system, VisNet. The hand-centered neurons developed in the model use an invariance learning mechanism known as continuous transformation (CT) learning. In contrast to previous theoretical proposals for the development of hand-centered visual representations, CT learning does not need a memory trace of recent neuronal activity to be incorporated in the synaptic learning rule. Instead, CT learning relies solely on a Hebbian learning rule, which is able to exploit the spatial overlap that naturally occurs between successive images of a hand-object configuration as it is shifted across different retinal locations due to saccades. Our simulations show how individual neurons in the network model can learn to respond selectively to target objects in particular locations with respect to the hand, irrespective of where the hand-object configuration occurs on the retina. The response properties of these hand-centred neurons further generalise to localised receptive fields in the hand-centred space when tested on novel hand-object configurations that have not been explored during training. Indeed, even when the network is trained with target objects presented across a near continuum of locations around the hand during training, the model continues to develop hand-centred neurons with localised receptive fields in hand-centred space. With the help of principal component analysis, we provide the first theoretical framework that explains the behavior of Hebbian learning in VisNet.

Suggested Citation

  • Jannis Born & Juan M Galeazzi & Simon M Stringer, 2017. "Hebbian learning of hand-centred representations in a hierarchical neural network model of the primate visual system," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-35, May.
  • Handle: RePEc:plo:pone00:0178304
    DOI: 10.1371/journal.pone.0178304
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0178304
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0178304&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0178304?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gina G. Turrigiano & Kenneth R. Leslie & Niraj S. Desai & Lana C. Rutherford & Sacha B. Nelson, 1998. "Activity-dependent scaling of quantal amplitude in neocortical neurons," Nature, Nature, vol. 391(6670), pages 892-896, February.
    2. Christopher A. Buneo & Murray R. Jarvis & Aaron P. Batista & Richard A. Andersen, 2002. "Direct visuomotor transformations for reaching," Nature, Nature, vol. 416(6881), pages 632-636, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Saponati & Martin Vinck, 2023. "Sequence anticipation and spike-timing-dependent plasticity emerge from a predictive learning rule," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Niranjan Chakravarthy & Shivkumar Sabesan & Kostas Tsakalis & Leon Iasemidis, 2009. "Controlling epileptic seizures in a neural mass model," Journal of Combinatorial Optimization, Springer, vol. 17(1), pages 98-116, January.
    3. Damien M O’Halloran, 2020. "Simulation model of CA1 pyramidal neurons reveal opposing roles for the Na+/Ca2+ exchange current and Ca2+-activated K+ current during spike-timing dependent synaptic plasticity," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-12, March.
    4. Sacha Jennifer van Albada & Moritz Helias & Markus Diesmann, 2015. "Scalability of Asynchronous Networks Is Limited by One-to-One Mapping between Effective Connectivity and Correlations," PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-37, September.
    5. Christian Keck & Cristina Savin & Jörg Lücke, 2012. "Feedforward Inhibition and Synaptic Scaling – Two Sides of the Same Coin?," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-15, March.
    6. Iris Reuveni & Sourav Ghosh & Edi Barkai, 2017. "Real Time Multiplicative Memory Amplification Mediated by Whole-Cell Scaling of Synaptic Response in Key Neurons," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-31, January.
    7. Mizusaki, Beatriz E.P. & Agnes, Everton J. & Erichsen, Rubem & Brunnet, Leonardo G., 2017. "Learning and retrieval behavior in recurrent neural networks with pre-synaptic dependent homeostatic plasticity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 279-286.
    8. Giorgia Dellaferrera & Stanisław Woźniak & Giacomo Indiveri & Angeliki Pantazi & Evangelos Eleftheriou, 2022. "Introducing principles of synaptic integration in the optimization of deep neural networks," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Bahareh Taghizadeh & Ole Fortmann & Alexander Gail, 2024. "Position- and scale-invariant object-centered spatial localization in monkey frontoparietal cortex dynamically adapts to cognitive demand," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Aseel Shomar & Lukas Geyrhofer & Noam E Ziv & Naama Brenner, 2017. "Cooperative stochastic binding and unbinding explain synaptic size dynamics and statistics," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-24, July.
    11. John Palmer & Adam Keane & Pulin Gong, 2017. "Learning and executing goal-directed choices by internally generated sequences in spiking neural circuits," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-23, July.
    12. Angulo-Garcia, David & Torcini, Alessandro, 2014. "Stable chaos in fluctuation driven neural circuits," Chaos, Solitons & Fractals, Elsevier, vol. 69(C), pages 233-245.
    13. Tiziano D’Albis & Richard Kempter, 2017. "A single-cell spiking model for the origin of grid-cell patterns," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-41, October.
    14. Juan Prada & Manju Sasi & Corinna Martin & Sibylle Jablonka & Thomas Dandekar & Robert Blum, 2018. "An open source tool for automatic spatiotemporal assessment of calcium transients and local ‘signal-close-to-noise’ activity in calcium imaging data," PLOS Computational Biology, Public Library of Science, vol. 14(3), pages 1-34, March.
    15. Maxime Lemieux & Narges Karimi & Frederic Bretzner, 2024. "Functional plasticity of glutamatergic neurons of medullary reticular nuclei after spinal cord injury in mice," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    16. Kendra S Burbank, 2015. "Mirrored STDP Implements Autoencoder Learning in a Network of Spiking Neurons," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-25, December.
    17. Pierre Yger & Kenneth D Harris, 2013. "The Convallis Rule for Unsupervised Learning in Cortical Networks," PLOS Computational Biology, Public Library of Science, vol. 9(10), pages 1-16, October.
    18. Jimin Wu & Yuzhi Chen & Ashok Veeraraghavan & Eyal Seidemann & Jacob T. Robinson, 2024. "Mesoscopic calcium imaging in a head-unrestrained male non-human primate using a lensless microscope," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Ettore Ambrosini & Marco Ciavarro & Gina Pelle & Mauro Gianni Perrucci & Gaspare Galati & Patrizia Fattori & Claudio Galletti & Giorgia Committeri, 2012. "Behavioral Investigation on the Frames of Reference Involved in Visuomotor Transformations during Peripheral Arm Reaching," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-8, December.
    20. Chiara Bartolozzi & Giacomo Indiveri & Elisa Donati, 2022. "Embodied neuromorphic intelligence," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0178304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.