IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47554-4.html
   My bibliography  Save this article

Position- and scale-invariant object-centered spatial localization in monkey frontoparietal cortex dynamically adapts to cognitive demand

Author

Listed:
  • Bahareh Taghizadeh

    (German Primate Center
    Institute for Research in Fundamental Sciences (IPM))

  • Ole Fortmann

    (German Primate Center
    University of Göttingen)

  • Alexander Gail

    (German Primate Center
    University of Göttingen
    Bernstein Center for Computational Neuroscience
    Leibniz ScienceCampus Primate Cognition)

Abstract

Egocentric encoding is a well-known property of brain areas along the dorsal pathway. Different to previous experiments, which typically only demanded egocentric spatial processing during movement preparation, we designed a task where two male rhesus monkeys memorized an on-the-object target position and then planned a reach to this position after the object re-occurred at variable location with potentially different size. We found allocentric (in addition to egocentric) encoding in the dorsal stream reach planning areas, parietal reach region and dorsal premotor cortex, which is invariant with respect to the position, and, remarkably, also the size of the object. The dynamic adjustment from predominantly allocentric encoding during visual memory to predominantly egocentric during reach planning in the same brain areas and often the same neurons, suggests that the prevailing frame of reference is less a question of brain area or processing stream, but more of the cognitive demands.

Suggested Citation

  • Bahareh Taghizadeh & Ole Fortmann & Alexander Gail, 2024. "Position- and scale-invariant object-centered spatial localization in monkey frontoparietal cortex dynamically adapts to cognitive demand," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47554-4
    DOI: 10.1038/s41467-024-47554-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47554-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47554-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jonathan D. Wallis & Kathleen C. Anderson & Earl K. Miller, 2001. "Single neurons in prefrontal cortex encode abstract rules," Nature, Nature, vol. 411(6840), pages 953-956, June.
    2. Christopher A. Buneo & Murray R. Jarvis & Aaron P. Batista & Richard A. Andersen, 2002. "Direct visuomotor transformations for reaching," Nature, Nature, vol. 416(6881), pages 632-636, April.
    3. L. H. Snyder & A. P. Batista & R. A. Andersen, 1997. "Coding of intention in the posterior parietal cortex," Nature, Nature, vol. 386(6621), pages 167-170, March.
    4. P. M. Hartigan, 1985. "Computation of the Dip Statistic to Test for Unimodality," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 34(3), pages 320-325, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesco Ceccarelli & Lorenzo Ferrucci & Fabrizio Londei & Surabhi Ramawat & Emiliano Brunamonti & Aldo Genovesio, 2023. "Static and dynamic coding in distinct cell types during associative learning in the prefrontal cortex," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Chacón, José E. & Fernández Serrano, Javier, 2024. "Bayesian taut splines for estimating the number of modes," Computational Statistics & Data Analysis, Elsevier, vol. 196(C).
    3. James Mitchell & Aubrey Poon & Dan Zhu, 2024. "Constructing density forecasts from quantile regressions: Multimodality in macrofinancial dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 790-812, August.
    4. Suren Basov & Svetlana Danilkina & David Prentice, 2020. "When Does Variety Increase with Quality?," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 56(3), pages 463-487, May.
    5. Mariani, Fabio & Pérez-Barahona, Agustín & Raffin, Natacha, 2010. "Life expectancy and the environment," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 798-815, April.
    6. Deversi, Marvin & Ispano, Alessandro & Schwardmann, Peter, 2021. "Spin doctors: An experiment on vague disclosure," European Economic Review, Elsevier, vol. 139(C).
    7. Joerg Heining & Joerg Lingens, 2000. "Social Interaction in Regional Labour Markets," Regional and Urban Modeling 283600034, EcoMod.
    8. Graham Elliott & Nikolay Kudrin & Kaspar Wüthrich, 2022. "Detecting p‐Hacking," Econometrica, Econometric Society, vol. 90(2), pages 887-906, March.
    9. Pfister, Roland & Wirth, Robert & Weller, Lisa & Foerster, Anna & Schwarz, Katharina, 2018. "Taking shortcuts: Cognitive conflict during motivated rule-breaking," MPRA Paper 95773, University Library of Munich, Germany.
    10. Florian Raudies & Eric A Zilli & Michael E Hasselmo, 2014. "Deep Belief Networks Learn Context Dependent Behavior," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-9, March.
    11. John Ryter & Xinkai Fu & Karan Bhuwalka & Richard Roth & Elsa Olivetti, 2022. "Assessing recycling, displacement, and environmental impacts using an economics‐informed material system model," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 1010-1024, June.
    12. Utz Weitzel & Michael Kirchler, 2022. "The Banker's Oath And Financial Advice," Working Papers 2022-13, Faculty of Economics and Statistics, Universität Innsbruck.
    13. Beth Fairfield & Ettore Ambrosini & Nicola Mammarella & Maria Montefinese, 2017. "Affective Norms for Italian Words in Older Adults: Age Differences in Ratings of Valence, Arousal and Dominance," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-22, January.
    14. Picard, Nicolas, 2021. "The role of spatial competitive interactions between trees in shaping forest patterns," Theoretical Population Biology, Elsevier, vol. 142(C), pages 36-45.
    15. Donald R Cantrell & Jianhua Cang & John B Troy & Xiaorong Liu, 2010. "Non-Centered Spike-Triggered Covariance Analysis Reveals Neurotrophin-3 as a Developmental Regulator of Receptive Field Properties of ON-OFF Retinal Ganglion Cells," PLOS Computational Biology, Public Library of Science, vol. 6(10), pages 1-16, October.
    16. Christoph J. Borner & Ingo Hoffmann & Jonas Krettek & Lars M. Kurzinger & Tim Schmitz, 2021. "On the Return Distributions of a Basket of Cryptocurrencies and Subsequent Implications," Papers 2105.12334, arXiv.org.
    17. Diebolt, Claude & Mishra, Tapas & Perrin, Faustine, 2021. "Gender empowerment as an enforcer of individuals’ choice between education and fertility: Evidence from 19th century France," Journal of Economic Behavior & Organization, Elsevier, vol. 188(C), pages 408-438.
    18. Weitzel, Utz & Kirchler, Michael, 2023. "The Banker’s oath and financial advice," Journal of Banking & Finance, Elsevier, vol. 148(C).
    19. Madison Terrell & Qazi Haque & Jamie L. Cross & Firmin Doko Tchatoka, 2023. "Monetary policy shocks and exchange rate dynamics in small open economies," School of Economics and Public Policy Working Papers 2023-04 Classification-C3, University of Adelaide, School of Economics and Public Policy.
    20. Cheng, Ming-Yen & Hall, Peter, 1998. "On mode testing and empirical approximations to distributions," Statistics & Probability Letters, Elsevier, vol. 39(3), pages 245-254, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47554-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.