IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0173765.html
   My bibliography  Save this article

Inferring interactions in complex microbial communities from nucleotide sequence data and environmental parameters

Author

Listed:
  • Yu Shang
  • Johannes Sikorski
  • Michael Bonkowski
  • Anna-Maria Fiore-Donno
  • Ellen Kandeler
  • Sven Marhan
  • Runa S Boeddinghaus
  • Emily F Solly
  • Marion Schrumpf
  • Ingo Schöning
  • Tesfaye Wubet
  • Francois Buscot
  • Jörg Overmann

Abstract

Interactions occur between two or more organisms affecting each other. Interactions are decisive for the ecology of the organisms. Without direct experimental evidence the analysis of interactions is difficult. Correlation analyses that are based on co-occurrences are often used to approximate interaction. Here, we present a new mathematical model to estimate the interaction strengths between taxa, based on changes in their relative abundances across environmental gradients.

Suggested Citation

  • Yu Shang & Johannes Sikorski & Michael Bonkowski & Anna-Maria Fiore-Donno & Ellen Kandeler & Sven Marhan & Runa S Boeddinghaus & Emily F Solly & Marion Schrumpf & Ingo Schöning & Tesfaye Wubet & Franc, 2017. "Inferring interactions in complex microbial communities from nucleotide sequence data and environmental parameters," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-24, March.
  • Handle: RePEc:plo:pone00:0173765
    DOI: 10.1371/journal.pone.0173765
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0173765
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0173765&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0173765?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Steven P. Ellis, 2000. "Singularity and outliers in linear regression with application to least squares, least squares linear regression," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1-2), pages 121-129.
    2. Zachary D Kurtz & Christian L Müller & Emily R Miraldi & Dan R Littman & Martin J Blaser & Richard A Bonneau, 2015. "Sparse and Compositionally Robust Inference of Microbial Ecological Networks," PLOS Computational Biology, Public Library of Science, vol. 11(5), pages 1-25, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna S. Weiss & Lisa S. Niedermeier & Alexandra von Strempel & Anna G. Burrichter & Diana Ring & Chen Meng & Karin Kleigrewe & Chiara Lincetto & Johannes Hübner & Bärbel Stecher, 2023. "Nutritional and host environments determine community ecology and keystone species in a synthetic gut bacterial community," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Li, Jie & Shen, Xuzhu & Li, YaoTang, 2021. "Modeling the temporal dynamics of gut microbiota from a local community perspective," Ecological Modelling, Elsevier, vol. 460(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duo Jiang & Thomas Sharpton & Yuan Jiang, 2021. "Microbial Interaction Network Estimation via Bias-Corrected Graphical Lasso," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(2), pages 329-350, July.
    2. Jiarui Lu & Pixu Shi & Hongzhe Li, 2019. "Generalized linear models with linear constraints for microbiome compositional data," Biometrics, The International Biometric Society, vol. 75(1), pages 235-244, March.
    3. Dina in ‘t Zandt & Zuzana Kolaříková & Tomáš Cajthaml & Zuzana Münzbergová, 2023. "Plant community stability is associated with a decoupling of prokaryote and fungal soil networks," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Li, Lianwei & Li, Wendy & Zou, Quan & Ma, Zhanshan (Sam), 2020. "Network analysis of the hot spring microbiome sketches out possible niche differentiations among ecological guilds," Ecological Modelling, Elsevier, vol. 431(C).
    5. Laszlo Balazsi & Felix Chan & Laszlo Matyas, 2022. "Event count estimation," Econometric Reviews, Taylor & Francis Journals, vol. 41(2), pages 147-176, February.
    6. Qin Liu & Qi Su & Fen Zhang & Hein M. Tun & Joyce Wing Yan Mak & Grace Chung-Yan Lui & Susanna So Shan Ng & Jessica Y. L. Ching & Amy Li & Wenqi Lu & Chenyu Liu & Chun Pan Cheung & David S. C. Hui & P, 2022. "Multi-kingdom gut microbiota analyses define COVID-19 severity and post-acute COVID-19 syndrome," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Marlin W. Ulmer & Barrett W. Thomas, 2019. "Enough Waiting for the Cable Guy—Estimating Arrival Times for Service Vehicle Routing," Transportation Science, INFORMS, vol. 53(3), pages 897-916, May.
    8. Pratheepa Jeganathan & Susan P. Holmes, 2021. "A Statistical Perspective on the Challenges in Molecular Microbial Biology," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(2), pages 131-160, June.
    9. Ana Popovic & Celine Bourdon & Pauline W. Wang & David S. Guttman & Sajid Soofi & Zulfiqar A. Bhutta & Robert H. J. Bandsma & John Parkinson & Lisa G. Pell, 2021. "Micronutrient supplements can promote disruptive protozoan and fungal communities in the developing infant gut," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    10. Rieser, Christopher & Filzmoser, Peter, 2023. "Extending compositional data analysis from a graph signal processing perspective," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    11. Runtan Cheng & Lu Wang & Shenglong Le & Yifan Yang & Can Zhao & Xiangqi Zhang & Xin Yang & Ting Xu & Leiting Xu & Petri Wiklund & Jun Ge & Dajiang Lu & Chenhong Zhang & Luonan Chen & Sulin Cheng, 2022. "A randomized controlled trial for response of microbiome network to exercise and diet intervention in patients with nonalcoholic fatty liver disease," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    12. Oliver Aasmets & Kertu Liis Krigul & Kreete Lüll & Andres Metspalu & Elin Org, 2022. "Gut metagenome associations with extensive digital health data in a volunteer-based Estonian microbiome cohort," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Emma Schwager & Himel Mallick & Steffen Ventz & Curtis Huttenhower, 2017. "A Bayesian method for detecting pairwise associations in compositional data," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-21, November.
    14. Koplin, Eric & Forzani, Liliana & Tomassi, Diego & Pfeiffer, Ruth M., 2024. "Sufficient dimension reduction for a novel class of zero-inflated graphical models," Computational Statistics & Data Analysis, Elsevier, vol. 196(C).
    15. Huang Lin & Merete Eggesbø & Shyamal Das Peddada, 2022. "Linear and nonlinear correlation estimators unveil undescribed taxa interactions in microbiome data," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    16. Lingjing Jiang & Niina Haiminen & Anna‐Paola Carrieri & Shi Huang & Yoshiki Vázquez‐Baeza & Laxmi Parida & Ho‐Cheol Kim & Austin D. Swafford & Rob Knight & Loki Natarajan, 2022. "Utilizing stability criteria in choosing feature selection methods yields reproducible results in microbiome data," Biometrics, The International Biometric Society, vol. 78(3), pages 1155-1167, September.
    17. Ines Wilms & Jacob Bien, 2021. "Tree-based Node Aggregation in Sparse Graphical Models," Papers 2101.12503, arXiv.org.
    18. Sara Del Duca & Stefano Mocali & Francesco Vitali & Arturo Fabiani & Maria Alexandra Cucu & Giuseppe Valboa & Giada d’Errico & Francesco Binazzi & Paolo Storchi & Rita Perria & Silvia Landi, 2024. "Impacts of Soil Management and Sustainable Plant Protection Strategies on Soil Biodiversity in a Sangiovese Vineyard," Land, MDPI, vol. 13(5), pages 1-20, April.
    19. Mendler, Isabella-Hilda & Drossel, Barbara & Hütt, Marc-Thorsten, 2024. "Microbiome abundance patterns as attractors and the implications for the inference of microbial interaction networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).
    20. Juan José Egozcue & Vera Pawlowsky-Glahn, 2019. "Compositional data: the sample space and its structure," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 599-638, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0173765. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.