IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v44y2013i1p77-93.html
   My bibliography  Save this article

A new encoding scheme-based hybrid algorithm for minimising two-machine flow-shop group scheduling problem

Author

Listed:
  • Cheng-Dar Liou
  • Yi-Chih Hsieh
  • Yin-Yann Chen

Abstract

This article investigates the two-machine flow-shop group scheduling problem (GSP) with sequence-dependent setup and removal times, and job transportation times between machines. The objective is to minimise the total completion time. As known, this problem is an NP-hard problem and generalises the typical two-machine GSPs. In this article, a new encoding scheme based on permutation representation is proposed to transform a random job permutation to a feasible permutation for GSPs. The proposed encoding scheme simultaneously determines both the sequence of jobs in each group and the sequence of groups. By reasonably combining particle swarm optimisation (PSO) and genetic algorithm (GA), we develop a fast and easily implemented hybrid algorithm (HA) for solving the considered problems. The effectiveness and efficiency of the proposed HA are demonstrated and compared with those of standard PSO and GA by numerical results of various tested instances with group numbers up to 20. In addition, three different lower bounds are developed to evaluate the solution quality of the HA. Limited numerical results indicate that the proposed HA is a viable and effective approach for the studied two-machine flow-shop group scheduling problem.

Suggested Citation

  • Cheng-Dar Liou & Yi-Chih Hsieh & Yin-Yann Chen, 2013. "A new encoding scheme-based hybrid algorithm for minimising two-machine flow-shop group scheduling problem," International Journal of Systems Science, Taylor & Francis Journals, vol. 44(1), pages 77-93.
  • Handle: RePEc:taf:tsysxx:v:44:y:2013:i:1:p:77-93
    DOI: 10.1080/00207721.2011.581396
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2011.581396
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2011.581396?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Allahverdi, Ali, 2015. "The third comprehensive survey on scheduling problems with setup times/costs," European Journal of Operational Research, Elsevier, vol. 246(2), pages 345-378.
    2. Shuaipeng Yuan & Tieke Li & Bailin Wang, 2021. "A discrete differential evolution algorithm for flow shop group scheduling problem with sequence-dependent setup and transportation times," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 427-439, February.
    3. Nantiwat Pholdee & Sujin Bureerat, 2016. "Hybrid real-code ant colony optimisation for constrained mechanical design," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(2), pages 474-491, January.
    4. Kuo-Hsiung Wang & Cheng-Dar Liou & Ya-Lin Wang, 2014. "Profit optimisation of the multiple-vacation machine repair problem using particle swarm optimisation," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(8), pages 1769-1780, August.
    5. Liou, Cheng-Dar & Hsieh, Yi-Chih, 2015. "A hybrid algorithm for the multi-stage flow shop group scheduling with sequence-dependent setup and transportation times," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 258-267.
    6. Maryam Mousavi & Hwa Jen Yap & Siti Nurmaya Musa & Farzad Tahriri & Siti Zawiah Md Dawal, 2017. "Multi-objective AGV scheduling in an FMS using a hybrid of genetic algorithm and particle swarm optimization," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-24, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:44:y:2013:i:1:p:77-93. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.